全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biology  2013 

Elucidation of Nuclear and Organellar Genomes of Gossypium hirsutum: Furthering Studies of Species Evolution and Applications for Crop Improvement

DOI: 10.3390/biology2041224

Keywords: cotton, polyploidy, fiber, gossypol, plastid

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plant genomes are larger and more complex than other eukaryotic organisms, due to small and large duplication events, recombination and subsequent reorganization of the genetic material. Commercially important cotton is the result of a polyploidization event between Old and New World cottons that occurred over one million years ago. Allotetraploid cotton has properties that are dramatically different from its progenitors—most notably, the presence of long, spinnable fibers. Recently, the complete genome of a New World cotton ancestral species, Gossypium raimondii, was completed. Future genome sequencing efforts are focusing on an Old World progenitor, G. arboreum. This sequence information will enable us to gain insights into the evolution of the cotton genome that may be used to understand the evolution of other plant species. The chloroplast genomes of multiple cotton species and races have been determined. This information has also been used to gain insight into the evolutionary history of cotton. Analysis of the database of nuclear and organellar sequences will facilitate the identification of potential genes of interest and subsequent development of strategies for improving cotton.

References

[1]  Fryxell, P.A. The Natural History of the Cotton Tribe; Texas A and M University Press: College Station, TX, USA, 1979.
[2]  Wendel, J.F.; Cronn, R.C. Polyploidy and the evolutionary history of cotton. In Advances in Agronomy; Sparks, D., Ed.; Academic Press: New York, NY, USA, 2003; Volume 78, pp. 139–186.
[3]  Fryxell, P.A. A revised taxonomic interpretation of Gossypium. Rheedea 1992, 2, 108–165.
[4]  Beasley, J.O. Meiotic chromosome behavior in species, species hybrids, haploids, and induced polyploids of Gossypium. Genetics 1942, 27, 25–54.
[5]  Endrizzi, J.E.; Turcotte, E.L.; Kohel, R.J. Genetics, cytology, and evolution of Gossypium. Adv. Genet. 1985, 23, 271–375, doi:10.1016/S0065-2660(08)60515-5.
[6]  Rathore, K.S. Cotton. In Biotechnology in Agriculture and Forestry; Pua, E.C., Davey, M.R., Eds.; Springer: Heidelberg/Berlin, Germany, 2007; Volume 61, pp. 107–145.
[7]  Brubaker, C.L.; Paterson, A.H.; Wendel, J.F. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 1999, 42, 184–203, doi:10.1139/g98-118.
[8]  Wang, K.; Wang, Z.; Li, F.; Ye, W.; Wang, J.; Song, G.; Yue, Z.; Cong, L.; Shang, H.; Zhu, S.; et al. The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 2012, 44, 1098–1103, doi:10.1038/ng.2371.
[9]  Paterson, A.H.; Wendel, J.F.; Gundlach, H.; Guo, H.; Jenkins, J.; Jin, D.; Llewellyn, D.; Showmaker, K.C.; Shu, S.; Udall, J.; et al. Repeated polyploidization of gossypium genomes and the evolution of spinnable cotton fibres. Nature 2012, 492, 423–427, doi:10.1038/nature11798.
[10]  USDA, Crop Values 2012 Summary; USDA National Agricultural Statistics Service: Washington, DC, USA, 2013.
[11]  Wendel, J.F.; Olson, P.D.; Stewart, J.M. Genetic diversity, introgression, and independent domestication of old-world cultivated cottons. Am. J. Bot. 1989, 76, 1795–1806, doi:10.2307/2444478.
[12]  Reinisch, A.J.; Dong, J.M.; Brubaker, C.L.; Stelly, D.M.; Wendel, J.F.; Paterson, A.H. A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: Chromosome organization and evolution in a disomic polyploid genome. Genetics 1994, 138, 829–847.
[13]  Saha, S.; Karaca, M.; Jenkins, J.N.; Zipf, A.E.; Reddy, O.U.K.; Kantety, R.V. Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica 2003, 130, 355–364, doi:10.1023/A:1023077209170.
[14]  Kebede, H.; Burow, G.; Dani, R.G.; Allen, R.D. A-genome cotton as a source of genetic variability for upland cotton (Gossypium hirsutum). Genet. Res. Crop Evol. 2007, 54, 885–895, doi:10.1007/s10722-006-9157-6.
[15]  Lin, L.; Pierce, G.; Bowers, J.; Estill, J.; Compton, R.; Rainville, L.; Kim, C.; Lemke, C.; Rong, J.; Tang, H.; et al. A draft physical map of a D-genome cotton species (Gossypium raimondii). BMC Genomics 2010, 11, 395, doi:10.1186/1471-2164-11-395.
[16]  Flagel, L.; Wendel, J.; Udall, J. Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allopolyploid cotton. BMC Genomics 2012, 13, 302, doi:10.1186/1471-2164-13-302.
[17]  Grant, V. The Origin of Adaptations; Columbia University Press: New York, NY, USA, 1963.
[18]  Goldblatt, P. Polyploidy in angiosperms: Monocotyledons. In Polyploidy: Biological Relevance; Lewis, W.H., Ed.; Plenum Press: New York, NY, USA, 1980; pp. 219–239.
[19]  Masterson, J. Stomatal size in fossil plants: Evidence for polypolidy in majority of angiosperms. Science 1994, 264, 421–423.
[20]  Bowers, J.E.; Chapman, B.A.; Rong, J.; Paterson, A.H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 2003, 422, 433–438, doi:10.1038/nature01521.
[21]  Adams, K.L.; Wendel, J.F. Exploring the genomic mysteries of polyploidy in cotton. Biol. J. Linn. Soc. 2004, 82, 573–581, doi:10.1111/j.1095-8312.2004.00342.x.
[22]  Jiang, C.-X.W.; Robert, J.; El-Zik, K.M.; Paterson, A.H. Polyploid formation created unique avenuesfor response to selection in Gossypium (cotton). Proc. Natl. Acad. Sci. USA 1998, 95, 4419–4424, doi:10.1073/pnas.95.8.4419.
[23]  Phillips, L.L. Cotton. In The Evolution of Crop Plants; Simmonds, N.W., Ed.; Longman Scientific and Technical: Harlow, UK, 1976; pp. 196–200.
[24]  Paterson, A.H.; Saranga, Y.; Menz, M.; Jiang, C.X.; Wright, R.J. QTL analysis of genotype x environment interactions affecting cotton fiber quality. Theor. Appl. Genet. 2003, 106, 384–396.
[25]  Rong, J.-K.; Feltus, F.A.; Waghmare, V.N.; Pierce, G.J.; Chee, P.W.; Draye, X.; Saranga, Y.; Wright, R.J.; Wilkins, T.A.; May, O.L.; et al. Meta-analysis of polyploid cotton QTLs shows unequal contributions of subgenomes to acomplex network of genes and gene clusters implicated in lint fiber development. Genetics 2007, 176, 2577–2588.
[26]  Flagel, L.E.; Wendel, J.F. Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol. 2010, 186, 184–193, doi:10.1111/j.1469-8137.2009.03107.x.
[27]  Chaudhary, B.F.L.; Stupar, R.M.; Udall, J.A.; Verma, N.; Springer, N.M.; Wendel, J.F. Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics 2009, 182, 503–517, doi:10.1534/genetics.109.102608.
[28]  James, C. ISAAA Brief No. 44; ISAAA: Ithaca, NY, USA, 2013.
[29]  Gill, S.S.; Cowles, E.A.; Pietrantonio, P.V. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 1992, 37, 615–636, doi:10.1146/annurev.en.37.010192.003151.
[30]  Knowles, B.H. Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins. Adv. Insect Physiol. 1994, 24, 275–308, doi:10.1016/S0065-2806(08)60085-5.
[31]  Schnepf, E.; Crickmore, N.; van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. R. 1998, 62, 775–806.
[32]  H?fte, H.; Whiteley, H.R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 1989, 5, 242–255.
[33]  Crickmore, N.; Zeigler, D.R.; Feitelson, J.; Schnepf, E.; van Rie, J.; Lereclus, D.; Baum, J.; Dean, D.H. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. R. 1998, 62, 807–813.
[34]  Wilkins, T.A.; Rajasekaran, K.; Anderson, D.M. Cotton biotechnology. Crit. Rev. Plant Sci. 2000, 19, 511–550, doi:10.1016/S0735-2689(01)80007-1.
[35]  Perlak, F.J.; Deaton, R.W.; Armstrong, T.A.; Fuchs, R.L.; Sims, S.R.; Greenplate, J.T.; Fischhoff, D. Insect resistant cotton plants. Biotechnology 1990, 8, 939–943.
[36]  Perlak, F.; Fuchs, R.; Dean, D.A.; McPherson, S.L.; Fischhoff, D.A. Modification of the coding sequences enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 1991, 88, 3324–3329.
[37]  Benedict, J.H.; Sachs, E.S.; Altman, D.W.; Ring, D.R.; Stone, T.B.; Sims, S.R. Impact of endotoxin-producing transgenic cotton on insect plant interactions with Heliothis virescens and Helicoverpa zea (lepidoptera: Noctuidae). Environ. Entomol. 1993, 22, 1–9.
[38]  Halcomb, J.L.; Benedict, J.H.; Cook, B.; Ring, D.R. Survival and growth of bollworm and tobacco budworm on nontransgenic and transgenic cotton expressing a cryla insecticidal protein (lepidoptera: Noctuidae). Environ. Entomol. 1996, 25, 250–255.
[39]  Flint, H.M.; Henneberry, T.J.; Wilson, F.D.; Holguin, E.; Parks, N.; Buehler, R.E. The effects of transgenic cotton, Gossypium hirsutum L., containing Bacillus thuringiensis toxin genes for the control of the pink bollworm, Pectinophora gossypiella (saunders) and other arthropods. Southwest. Entomol. 1995, 20, 281–292.
[40]  Flint, H.M.; Antilla, L.; Leggett, J.E.; Parks, N.J. Seasonal infestation by pink bollworm, Pectinophora gossypiella (saunders) of transgenic cotton, containing the bollgard gene, planted in commercial fields in central Arizona. Southwest. Entomol. 1996, 21, 229–235.
[41]  Wilson, D.F.; Flint, H.M.; Deaton, R.W.; Fischhoff, D.A.; Perlak, F.J.; Armstrong, T.A.; Fuchs, R.L.; Berberich, S.A.; Parks, N.J.; Stap, B.R. Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm (lepidoptera: Gelechiidae). J. Econ. Entomol. 1992, 85, 1516–1521.
[42]  Hardee, D.D.; Bryan, W.W. Influence of Bacillus thuringiensis- transgenic and nectariless cotton on insect populations with emphasis on the tarnished plant bug (heteroptera: Miridae). J. Econ. Entomol. 1997, 90, 663–668.
[43]  ISAAA. Global Status of Commercialized Biotech/GM Crops:2012; International Service for the Acquisition of Agricultural Bio-tech Applications: Ithaca, NY, USA, 2012; Volume 44.
[44]  Rothrock, C.S.; Colyer, P.D.; Buchanana, M.; Gbur, E.E. Cotton Seedling Diseases: Importance, Occurance and Chemical Control. In Proceedings of the World Cotton Research Conference, Lubbock, TX, USA, 10–14 September 2007; pp. 1–5.
[45]  Service, U.N.A.S. Quick Stats. Available online: http://www.nass.usda.gov/ (accessed on 20 August 2013).
[46]  FDA. CPG Sec. 683.100 Action Levels for Aflatoxin in Animal Feeds; Food and Drug Administration: Rockville, MD, USA, 1994.
[47]  Cotty, P.J.; Bayman, P. Competitive exclusion of a toxigenic strain of Aspergillus flavus by an atoxigenic strain. Phytopathology 1993, 83, 1283–1287, doi:10.1094/Phyto-83-1283.
[48]  Cotty, P.J.; Antilla, L.; Wakelyn, P.J. Competitive Exclusion of Aflatoxin Producers: Farmer-Driven Research and Development. In Biological Control: A Global Perspective; Vincent, C.G., Goettel, M.S., Lazarovits, G., Eds.; CAB International: Oxfordshire, UK, 2007; pp. 241–253.
[49]  Chlan, C.A.; Manual, R.; Rajasekaran, K.; Cary, J.; Cleveland, T.E.; Guo, J. Genetic engineering of cotton to confer resistance to the fungal pathogen Aspergillus flavus. South. Assoc. Agric. Sci. B Biochem. Biotech. 2003, 16, 12–19.
[50]  Cary, J.W.; Rajasekaran, K.; Brown, R.L.; Luo, M.; Chen, Z.-Y.; Bhatnagar, D. Developing resistance to aflatoxin in maize and cottonseed. Toxins 2011, 3, 678–696, doi:10.3390/toxins3060678.
[51]  Guo, B.; Fedorova, N.D.; Chen, X.; Wan, C.-H.; Wang, W.; Nierman, W.C.; Bhatnagar, D.; Yu, J. Gene expression profiling and identification of resistance genes to Aspergillus flavus infection in peanut through EST and microarray strategies. Toxins 2011, 3, 737–753, doi:10.3390/toxins3070737.
[52]  Battisti, D.S.; Naylor, R.L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 2009, 323, 240–244, doi:10.1126/science.1164363.
[53]  Fedoroff, N.V.; Battisti, D.S.; Beachy, R.N.; Cooper, P.J.M.; Fischhoff, D.A.; Hodges, C.N.; Knauf, V.C.; Lobell, D.; Mazur, B.J.; Molden, D.; et al. Radically rethinking agriculture for the 21st century. Science 2010, 327, 833–834, doi:10.1126/science.1186834.
[54]  Allen, R.D. Evaluation of Drought Tolerance Strategies in Cotton; National Agricultural Biotechnology Council: Ithaca, NY, USA, 2012; pp. 45–63.
[55]  Saranga, Y.; Jiang, C.X.; Wright, R.J.; Yakir, D.; Paterson, A.H. Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant Cell Environ. 2004, 27, 263–277, doi:10.1111/j.1365-3040.2003.01134.x.
[56]  Levi, A.; Ovnat, L.; Paterson, A.H.; Saranga, Y. Photosynthesis of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits. Plant Sci. 2009, 177, 88–96, doi:10.1016/j.plantsci.2009.04.001.
[57]  Zhang, L.; Li, F.-G.; Liu, C.-L.; Zhang, C.-J.; Zhang, X.-Y. Construction and analysis of cotton (Gossypium arboreum L.) drought-related cDNA library. BMC Res. Notes 2009, 2, 120, doi:10.1186/1756-0500-2-120.
[58]  Park, W.; Scheffler, B.E.; Bauer, P.J.; Campbell, T.B. Genome-wide identification of differentially expressed genes under water deficit stress in upland cotton (Gossypium hirsutum L.). BMC Plant Biol. 2012, 12, 1–12, doi:10.1186/1471-2229-12-1.
[59]  Ranjan, A.; Pandey, N.; Lakhwani, D.; Dubey, N.K.; Pathre, U.; Sawant, S. Comparative transcriptomic analysis of roots of contrasting Gossypium herbaceum genotypes revealing adaptation to drought. BMC Genomics 2012, 13, 680, doi:10.1186/1471-2164-13-680.
[60]  Kulkarni, V.N.K.B.; Maralappanavar, M.S.; Deshapande, L.A.; Narayanan, S.S. The Worldwide Gene Pools of Gossypium arboreum L. and G. herbaceum L.; Springer: New York, NY, USA, 2009; Volume 3.
[61]  Ranjan, A.; Nigam, D.; Asif, M.; Singh, R.; Ranjan, S.; Mantri, S.; Pandey, N.; Trivedi, I.; Rai, K.; Jena, S.; et al. Genome wide expression profiling of two accession of G. herbaceum L. In response to drought. BMC Genomics 2012, 13, 94, doi:10.1186/1471-2164-13-94.
[62]  Kim, H.J.; Triplett, B.A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 2001, 127, 1361–1366, doi:10.1104/pp.010724.
[63]  May, O.L.; Jividen, G. Genetic modification of cotton fiber properties as measured by single and high-volume instruments. Crop Sci. 1999, 39, 328–333.
[64]  Wilkins, T.A.; Jernstedt, J. Molecular genetics of developing cotton fibers. In Cotton Fibers: Developmental Biology, Quality Improvement and Textile Processing; Basra, A.S., Ed.; Food Products Press: New York, NY, USA, 1999; pp. 231–269.
[65]  Lee, J.J.; Woodward, A.W.; Chen, Z.J. Gene expression changes and early events in cotton fibre development. Ann. Bot. 2007, 100, 1391–1401, doi:10.1093/aob/mcm232.
[66]  Arpat, A.B.; Waugh, M.; Sullivan, J.P.; Gonzales, M.; Frisch, D.; Main, D.; Wood, T.; Leslie, A.; Wing, R.A.; Wilkins, T. Functional genomics of cell elongation in developing cotton fibers. Plant Mol. Biol. 2004, 54, 911–929, doi:10.1007/s11103-004-0392-y.
[67]  Chaudhary, B.; Hovav, R.; Rapp, R.; Verma, N.; Udall, J.A.; Wendel, J.F. Global analysis of gene expression in cotton fibers from wild and domesticated Gossypium barbadense. Evol. Dev. 2008, 10, 567–582, doi:10.1111/j.1525-142X.2008.00272.x.
[68]  Al-Ghazi, Y.; Bourot, S.; Arioli, T.; Dennis, E.S.; Llewellyn, D. Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton quality. Plant Cell Physiol. 2009, 50, 1364–1381, doi:10.1093/pcp/pcp084.
[69]  Lacape, J.-M.; Claverie, M.; Vidal, R.O.; Carazzolle, M.F.; Guimar?es Pereira, G.A.; Ruiz, M.; Pré, M.; Llewellyn, D.; Al-Ghazi, Y.; Jacobs, J.; et al. Deep sequencing reveals differences in the transcriptional landscapes of fibers from two cultivated species of cotton. PLoS One 2012, 7, e48855, doi:10.1371/journal.pone.0048855.
[70]  Li, X.; Yuan, D.; Zhang, J.; Lin, Z.; Zhang, X. Genetic mapping and characteristics of genes specifically or preferentially expressed during fiber development in cotton. PLoS One 2013, 8, e54444.
[71]  Gilbert, M.; Turley, R.; Kim, H.; Li, P.; Thyssen, G.; Tang, Y.; Delhom, C.; Naoumkina, M.; Fang, D. Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant ligon lintless-1 (li1). BMC Genomics 2013, 14, 403.
[72]  Naoumkina, M.; Hinchliffe, D.; Turley, R.; Bland, J.; Fang, D. Integrated metabolomics and genomics analysis provides new insights into the fiber elongation process in ligon lintless-2 mutant cotton (Gossypium hirsutum L.). BMC Genomics 2013, 14, 155, doi:10.1186/1471-2164-14-155.
[73]  Padmalatha, K.V.; Patil, D.P.; Kumar, K.; Dhandapani, G.; Kanakachari, M.; Phanindra, M.; Kumar, S.; Mohan, T.C.; Jain, N.; Prakash, A.H.; et al. Functional genomics of fuzzless-lintless mutant of Gossypium hirsutum L. Cv. Mcu5 reveal key genes and pathways involved in cotton fibre initiation and elongation. BMC Genomics 2012, 13, 1–15.
[74]  Zhao, P.-M.; Wang, L.-L.; Han, L.-B.; Wang, J.; Yao, Y.; Wang, H.-Y.; Du, X.-M.; Luo, Y.-M.; Xia, G.-X. Proteomic identification of differentially expressed proteins in the ligon lintless mutant of upland cotton (Gossypium hirsutum L.). J. Proteome Res. 2009, 9, 1076–1087.
[75]  Yuan, D.; Tu, L.; Zhang, X. Generation, annotation and analysis of first large-scale expressed sequence tags from developing fiber of Gossypium barbadense L. PLoS One 2011, 6, e22758, doi:10.1371/journal.pone.0022758.
[76]  Risco, C.A.; Chase, C.C. Gossypol; CRC Press: Boca Raton, FL, USA, 1997.
[77]  Adams, R.; Geissman, T.A.; Edwards, J.D. Gossypol, a pigment of cottonseed. Chem. Rev. 1960, 60, 555–574, doi:10.1021/cr60208a002.
[78]  Bottger, G.T.; Shehan, E.T.; Lukefahr, M.J. Relation of gossypol content of cotton plants to insect resistance. J. Econ. Entomol. 1964, 57, 183–185.
[79]  Reiser, R.; Hwei, C.F. The mechanism of gossypol detoxification by ruminant animals. J. Nutr. 1962, 76, 215–218.
[80]  Cater, C.M.; Lyman, C.M. Reaction of gossypol with amino acids and other amino compounds. J. Am. Oil Chem. Soc. 1969, 46, 649–653, doi:10.1007/BF02540621.
[81]  McMichael, S.C. Glandless boll in upland cotton and its use in the study of natural crossing. Agron. J. 1954, 46, 527–528, doi:10.2134/agronj1954.00021962004600110016x.
[82]  Lusas, E.W.; Jividen, G.M. Glandless cottonseed: A review of the first 25 years of processing and utilization research. J. Am. Oil Chem. Soc. 1987, 64, 839–854, doi:10.1007/BF02641491.
[83]  Chlan, C.A.; Borroto, K.; Kamalay, J.A.; Dure, L., III. Developmental biochemistry of cottonseed embryogenesis and germination. XIX. Sequences and genomic organization of the α globulin (vicilin) genes of cottonseed. Plant Mol. Biol. 1987, 9, 533–546, doi:10.1007/BF00020531.
[84]  Sunilkumar, G.; Campbell, L.M.; Puckhaber, L.; Stipanovic, R.D.; Rathore, K.S. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc. Natl. Acad. Sci. USA 2006, 103, 18054–18059.
[85]  Palle, S.R.; Campbell, L.M.; Pandeya, D.; Puckhaber, L.; Tollack, L.K.; Marcel, S.; Sundaram, S.; Stipanovic, R.D.; Wedegaertner, T.C.; Hinze, L.; et al. RNAi-mediated ultra-low gossypol cottonseed trait: Performance of transgenic lines under field conditions. Plant Biotech. J. 2013, 11, 296–304, doi:10.1111/pbi.12013.
[86]  Watkins, C. The saga of ultralow gossypol cottonseed. Inform 2013, 24, 279–283.
[87]  Stam, M.; Mol, J.N.M.; Kooter, J.M. The silence of genes in transgenic plants. Ann. Bot. 1997, 79, 3–12, doi:10.1006/anbo.1996.0295.
[88]  Forsbach, A.; Schubert, D.; Lechtenberg, B.; Gils, M.; Schmidt, R. A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Mol. Biol. 2003, 52, 161–176, doi:10.1023/A:1023929630687.
[89]  Clark, K.A.; Krysan, P.J. Chromosomal translocations are a common phenomenon in Arabidopsis thaliana T-DNA insertion lines. Plant J. 2010, 64, 990–1001, doi:10.1111/j.1365-313X.2010.04386.x.
[90]  Lafleuriel, J.; Degroote, F.; Depeiges, A.; Picard, G. A reciprocal translocation, induced by a canonical integration of a single T-DNA, interrupts the hmg-i/y Arabidopsis thaliana gene. Plant Physiol. Biochem. 2004, 42, 171–179, doi:10.1016/j.plaphy.2004.01.003.
[91]  Paszkowski, J.; Baur, M.; Bogucki, A.; Potrykus, I. Gene targeting in plants. EMBO J. 1988, 7, 4021–4026.
[92]  Albert, H.; Dale, E.C.; Lee, E.; Ow, D.W. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 1995, 7, 649–659.
[93]  Puchta, H.; Dujon, B.; Hohn, B. Homologous recombination in plant cells is enhanced by in vivo induction of double-strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 1993, 21, 5034–5040, doi:10.1093/nar/21.22.5034.
[94]  Townsend, J.A.; Wright, D.A.; Winfrey, R.J.; Fu, F.; Maeder, M.L.; Joung, J.K.; Voytas, D.F. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 2009, 459, 442–445, doi:10.1038/nature07845.
[95]  Ruhlman, T.; Verma, D.; Samson, N.; Daniell, H. The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol. 2010, 152, 2088–2104, doi:10.1104/pp.109.152017.
[96]  Verma, D.; Daniell, H. Chloroplast vector systems for biotechnology applications. Plant Physiol. 2007, 145, 1129–1143, doi:10.1104/pp.107.106690.
[97]  Tregoning, J.S.; Nixon, P.; Kuroda, H.; Svab, Z.; Clare, S.; Bowe, F.; Fairweather, N.; Ytterberg, J.; van Wijk, K.J.; Dougan, G.; et al. Expression of tetanus toxin fragment c in tobacco chloroplasts. Nucleic Acids Res. 2003, 31, 1174–1179, doi:10.1093/nar/gkg221.
[98]  Daniell, H.; Singh, N.D.; Mason, H.; Streatfield, S.J. Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci. 2009, 14, 669–679, doi:10.1016/j.tplants.2009.09.009.
[99]  Ye, G.N.; Hajdukiewicz, P.T.J.; Broyles, D.; Rodriguez, D.; Xu, C.W.; Nehra, N.; Staub, J.M. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J. 2001, 25, 261–270.
[100]  Leelavathi, S.; Reddy, V. Chloroplast expression of his-tagged gus-fusions: A general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol. Breed. 2003, 11, 49–58, doi:10.1023/A:1022114427971.
[101]  Chlan, C.A.; Rajasekaran, K.; Cary, J.W.; Cleveland, T.E. Expression patterns of cotton chloroplast genes during development: Implications for development of plastid transformation vectors. Biol. Plant. 2011, 56, 126–130.
[102]  Cronn, R.; Liston, A.; Parks, M.; Gernandt, D.S.; Shen, R.; Mockler, T. Multiplex sequencing of plant chloroplast genomes using solexa sequencing-by-synthesis technology. Nucleic Acids Res. 2008, 36, e122, doi:10.1093/nar/gkn502.
[103]  Stull, G.W.; Moore, M.J.; Mandala, V.S.; Douglas, N.A.; Kates, H.-R.; Qi, X.; Brockington, S.F.; Soltis, P.S.; Soltis, D.E.; Gitzendanner, M.A. A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes. Appl. Plant Sci. 2013, 1, 1200497.
[104]  Xu, Q.; Xiong, G.; Li, P.; He, F.; Huang, Y.; Wang, K.; Li, Z.; Hua, J. Analysis of complete nucleotide sequences of 12 Gossypium chloroplast genomes: Origin and evolution of allotetraploids. PLoS One 2012, 7, e37128.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133