全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biology  2013 

Algorithms for Computing the Triplet and Quartet Distances for Binary and General Trees

DOI: 10.3390/biology2041189

Keywords: algorithmic development, tree comparison, triplet distance, quartet distance

Full-Text   Cite this paper   Add to My Lib

Abstract:

Distance measures between trees are useful for comparing trees in a systematic manner, and several different distance measures have been proposed. The triplet and quartet distances, for rooted and unrooted trees, respectively, are defined as the number of subsets of three or four leaves, respectively, where the topologies of the induced subtrees differ. These distances can trivially be computed by explicitly enumerating all sets of three or four leaves and testing if the topologies are different, but this leads to time complexities at least of the order n 3 or n 4 just for enumerating the sets. The different topologies can be counte dimplicitly, however, and in this paper, we review a series of algorithmic improvements that have been used during the last decade to develop more efficient algorithms by exploiting two different strategies for this; one based on dynamic programming and another based oncoloring leaves in one tree and updating a hierarchical decomposition of the other.

References

[1]  Robinson, D.; Foulds, L.R. Comparison of phylogenetic trees. Math. Biosci.?1981, 53, 131–147, doi:10.1016/0025-5564(81)90043-2.
[2]  Estabrook, G.F.; McMorris, F.R.; Meacham, C.A. Comparison of undirected phylogenetic trees based on subtrees of four evolutionary units. Syst. Zool.?1985, 34, 193–200, doi:10.2307/2413326.
[3]  Critchlow, D.E.; Pearl, D.K.; Qian, C. The triples distance for rooted bifurcating phylogenetic trees. Syst. Biol.?1996, 45, 323–334, doi:10.1093/sysbio/45.3.323.
[4]  Day, W.H.E. Optimal-algorithms for comparing trees with labeled leaves. J. Classif.?1985, 2, 7–28, doi:10.1007/BF01908061.
[5]  Brodal, G.S.; Fagerberg, R.; Mailund, T.; Pedersen, C.N.S.; Sand, A. Efficient Algorithms for Computing the Triplet and Quartet Distance between Trees of Arbitrary Degree. In Proceedings of the annual ACM-SIAM Symposium on Discrete Algorithms (SODA), New Orleans, LA, USA, January 2013; pp. 1814–1832.
[6]  Steel, M.; Penny, D. Distributions of tree comparison metrics—Some new results. Syst. Biol.?1993, 42, 126–141.
[7]  Bandelt, H.J.; Dress, A. Reconstructing the shape of a tree from observed dissimilarity data. Adv. Appl. Math.?1986, 7, 309–343, doi:10.1016/0196-8858(86)90038-2.
[8]  Huson, D.H.; Scornavacca, C. Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks. Syst. Biol.?2012, 61, 1061–1067, doi:10.1093/sysbio/sys062.
[9]  Snir, S.; Rao, S. Quartet MaxCut: A fast algorithm for amalgamating quartet trees. Mol. Phylogenetics Evol.?2012, 62, 1–8, doi:10.1016/j.ympev.2011.06.021.
[10]  Bansal, M.S.; Dong, J.; Fernández-Baca, D. Comparing and aggregating partially resolved trees. Theor. Comput. Sci.?2011, 412, 6634–6652, doi:10.1016/j.tcs.2011.08.027.
[11]  Pompei, S.; Loreto, V.; Tria, F. On the accuracy of language trees. PLoS One?2011, 6, e20109, doi:10.1371/journal.pone.0020109.
[12]  Walker, R.S.; Wichmann, S.; Mailund, T.; Atkisson, C.J. Cultural phylogenetics of the Tupi language family in lowland South America. PLoS One?2011, 7, e35025.
[13]  Bryant, D.; Tsang, J.; Kearney, P.; Li, M. Computing the Quartet Distance between Evolutionary Trees. In Proceedings of the annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, USA, January 2000.
[14]  Brodal, G.S.; Fagerberg, R.; Pedersen, C.N.S. Computing the Quartet Distance Between Evolutionary Trees in Time O(n log2 n). In Proceedings of the annual International Symposium on Algorithms and Computation, Christchurch, New Zealand, 19–21 December; Springer: Berlin/ Heidelberg, Germany, 2001; Volume 2223, pp. 731–742.
[15]  Brodal, G.S.; Fagerberg, R.; Pedersen, C.N.S. Computing the quartet distance between evolutionary trees in time O(n log n). Algorithmica?2004, 38, 377–395, doi:10.1007/s00453-003-1065-y.
[16]  Sand, A.; Brodal, G.S.; Fagerberg, R.; Pedersen, C.N.S.; Mailund, T. A practical O(n log2 n) time algorithm for computing the triplet distance on binary trees. BMC Bioinforma.?2013, 14, S18.
[17]  Mehlhorn, K. Data Structures and Algorithms: Sorting and Searching; Springer: Berlin/ Heidelberg, Germany, 1984.
[18]  Buneman, O.P. The recovery of trees from measures of dissimilarity. In Mathematics of the Archeological and Historical Sciences; Kendall, D.G., Tautu, P., Eds.; Columbia University Press: New York, NY, USA, 1971; pp. 387–395.
[19]  Bryant, D.; Moulton, V. A polynomial time algorithm for constructing the refined buneman tree. Appl. Math. Lett.?1999, 12, 51–56, doi:10.1016/S0893-9659(98)00148-7.
[20]  Christiansen, C.; Mailund, T.; Pedersen, C.N.S.; Randers, M. Computing the Quartet Distance Between Trees of Arbitrary Degree. In Proceeding of the annual Workshop on Algorithms in Bioinformatics, Mallorca, Spain, 3–6 October 2005; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3692, pp. 77–88.
[21]  Christiansen, C.; Mailund, T.; Pedersen, C.N.S.; Randers, M.; Stissing, M. Fast calculation of the quartet distance between trees of arbitrary degrees. Algorithms Mol. Biol.?2006, 1, 16–16, doi:10.1186/1748-7188-1-16.
[22]  Nielsen, J.; Kristensen, A.; Mailund, T.; Pedersen, C.N.S. A sub-cubic time algorithm for computing the quartet distance between two general trees. Algorithms Mol. Biol.?2011, doi:10.1186/1748-7188-6-15.
[23]  Coppersmith, D.; Winograd, S. Matrix multiplication via arithmetic progressions. J. Symb. Comput.?1990, 9, 251–280, doi:10.1016/S0747-7171(08)80013-2.
[24]  Stissing, M.; Pedersen, C.N.S.; Mailund, T.; Brodal, G.S.; Fagerberg, R. Computing the Quartet Distance between Evolutionary Trees of Bounded Degree. In Proceedings of the Asia-Pacific Bioinformatics Conference, Hong Kong, 15–17 January 2007; pp. 101–110.
[25]  Johansen, J.; Holt, M.K. Computing Triplet and Quartet Distances. Master’s Thesis, Aarhus University, Department of Computer Science, Aarhus, Denmark, 2013.
[26]  Mailund, T.; Pedersen, C.N.S. QDist–Quartet distance between evolutionary trees. Bioinformatics?2004, 20, 1636–1637, doi:10.1093/bioinformatics/bth097.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133