全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Atmosphere  2013 

Failure and Redemption of Multifilter Rotating Shadowband?Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting?Algorithm Performance at Atmospheric Radiation Measurement?(ARM)?North Slope of Alaska (NSA) and Southern Great Plains?(SGP)?Sites

DOI: 10.3390/atmos4030299

Keywords: Multifilter Rotating Shadowband Radiometer (MFRSR), Normal Incidence Multifilter Radiometer (NIMFR), aerosol optical depth and Angstrom exponent, ground-based multi-spectral measurements, cloud-screening algorithms, direct-beam sun transmittance, Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites

Full-Text   Cite this paper   Add to My Lib

Abstract:

Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) measurements, have exhibited excellent performance at many middle-to-low latitude sites around world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) and when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported MFRSR and NIMFR data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999–2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

References

[1]  Slingo, A.; Ackerman, T.P.; Allan, R.P.; Kassianov, E.; McFarlane, S.A.; Robinson, G.J.; Barnard, J.; Miller, M.A.; Harries, J.E.; Russell, J.E.; et al. Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance. Geophys. Res. Lett. 2006, 33, L24817, doi:10.1029/2006GL027869.
[2]  Myhre, G.; Samset, B.H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T.K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 2013, 13, 1853–1877, doi:10.5194/acp-13-1853-2013.
[3]  Ackerman, T.P.; Stokes, G.M. The atmospheric radiation measurement program. Phys. Today 2003, 56, 38–44, doi:10.1063/1.1554135.
[4]  Holben, B.; Eck, T.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16, doi:10.1016/S0034-4257(98)00031-5.
[5]  Hashimoto, M.; Nakajima, T.; Dubovik, O.; Campanelli, M.; Che, H.; Khatri, P.; Takamura, T.; Pandithurai, G. Development of a new data-processing method for SKYNET sky radiometer observations. Atmos. Meas. Tech. 2012, 5, 2723–2737, doi:10.5194/amt-5-2723-2012.
[6]  García, O.E.; Díaz, J.P.; Expósito, F.J.; Díaz, A.M.; Dubovik, O.; Derimian, Y.; Dubuisson, P.; Roger, J.-C. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data. Atmos. Chem. Phys. 2012, 12, 5129–5145, doi:10.5194/acp-12-5129-2012.
[7]  Chew, B.; Campbell, J.; Reid, J.; Giles, D.; Welton, E.; Salinas, S.; Liew, S. Tropical cirrus cloud contamination in sun photometer data. Atmos. Environ. 2011, 45, 6724–6731, doi:10.1016/j.atmosenv.2011.08.017.
[8]  Huang, J.; Hsu, N.C.; Tsay, S.-C.; Jeong, M.-J.; Holben, B.N.; Berkoff, T.A.; Welton, E.J. Susceptibility of aerosol optical thickness retrievals to thin cirrus contamination during the BASE-ASIA campaign. J. Geophys. Res. 2011, 116, D08214.
[9]  Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; K?rcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. 2013, 118, doi:10.1002/jgrd.50171.
[10]  McComiskey, A.; Schwartz, S.E.; Schmid, B.; Guan, H.; Lewis, E.R.; Ricchiazzi, P.; Ogren, J.A. Direct aerosol forcing: Calculation from observables and sensitivities to inputs. J. Geophys. Res. 2008, 113, D09202.
[11]  Schuster, G.L.; Dubovik, O.; Holben, B.N. Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res. 2006, 111, D07207, doi:10.1029/2005JD006328.
[12]  Michalsky, J.; Denn, F.; Flynn, C.; Hodges, G.; Kiedron, P.; Koontz, A.; Schlemmer, J.; Schwartz, S.E. Climatology of aerosol optical depth in north-central Oklahoma: 1992–2008. J. Geophys. Res. 2010, 115, D07203, doi:10.1029/2009JD012197.
[13]  Kassianov, E.; Pekour, M.; Barnard, J. Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing. Geophys. Res. Lett. 2012, 39, L20806.
[14]  Kassianov, E.; Barnard, J.; Pekour, M.; Berg, L.K.; Michalsky, J.; Lantz, K.; Hodges , G. Do diurnal aerosol changes affect daily average radiative forcing? Geophys. Res. Lett. 2013, 40, 3265–3269, doi:10.1002/grl.50567.
[15]  Harrison, L.; Michalsky, J. Objective algorithms for the retrieval of optical depths from ground-based measurements. Appl. Opt. 1994, 33, 5126–5132, doi:10.1364/AO.33.005126.
[16]  Alexandrov, M.D.; Marshak, A.; Cairns, B.; Lacis, A.A.; Carlson, B.E. Automated cloud screening algorithm for MFRSR data. Geophys. Res. Lett. 2004, 31, L04118, doi:10.1029/2003GL019105.
[17]  Shupe, M.D.; Intrieri, J.M. Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Clim. 2004, 17, 616–628, doi:10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.
[18]  Bennartz, R.; Shupe, M.D.; Turner, D.D.; Walden, V.P.; Steffen, K.; Cox, C.J.; Kulie, M.S.; Miller, N.B.; Pettersen, C. July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature 2013, 496, 83–86, doi:10.1038/nature12002.
[19]  Sassen, K.; Cho, B.S. Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor. 1992, 31, 1275–1285, doi:10.1175/1520-0450(1992)031<1275:STCLDF>2.0.CO;2.
[20]  Turner, D.D.; Vogelmann, A.M.; Austin, R.T.; Barnard, J.C.; Cady-Pereira, K.; Chiu, J.C.; Clough, S.A.; Flynn, C.; Khaiyer, M.M.; Liljegren, J.; et al. Thin liquid water clouds: Their importance and our challenge. Bull. Am. Meteor. Soc. 2007, 88, 177–190, doi:10.1175/BAMS-88-2-177.
[21]  Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud screening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 73, 337–349, doi:10.1016/S0034-4257(00)00109-7.
[22]  Kassianov, E.I.; Long, C.N.; Ovtchinnikov, M. Cloud sky cover versus cloud fraction: Whole-sky simulations and observations. J. Appl. Meteor. 2005, 44, 86–98, doi:10.1175/JAM-2184.1.
[23]  Long, C.N.; Sabburg, J.; Calbó, J.; Pagès, D. Retrieving cloud characteristics from ground-based daytime color all-sky images. J. Atmos. Ocean. Technol. 2006, 23, 633–652, doi:10.1175/JTECH1875.1.
[24]  Pérez-Ramirez, D.; Lyamani, H.; Olmo, F.J.; Whiteman, D.N.; Navas-Guzman, F.; Alados-Arboledas, L. Cloud screening and quality control algorithm for star photometer data: Assessment with lidar measurements and with all-sky images. Atmos. Meas. Technol. 2012, 5, 1585–1599, doi:10.5194/amt-5-1585-2012.
[25]  Campbell, J.R.; Hlavka, D.L.; Welton, E.J.; Flynn, C.J.; Turner, D.D.; Spinhirne, J.D.; Scott, V.S.; Hwang, I.H. Full-time, eye-safe cloud and aerosol lidar observation at Atmospheric Radiation Measurement Program sites: Instruments and data processing. J. Atmos. Ocean. Technol. 2002, 19, 431–442, doi:10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2.
[26]  Mace, G.G.; Benson, S. The vertical structure of cloud occurrence and radiative forcing at the SGP ARM site as revealed by 8 years of continuous data. J. Clim. 2008, 21, 2591–2610, doi:10.1175/2007JCLI1987.1.
[27]  Xi, B.; Dong, X.; Minnis, P.; Khaiyer, M.M. A 10 year climatology of cloud fraction and vertical distribution derived from both surface and GOES observations over the DOE ARM SPG site. J. Geophys. Res. 2010, 115, D12124, doi:10.1029/2009JD012800.
[28]  McFarlane, S.A.; Kassianov, E.I.; Barnard, J.; Flynn, C.; Ackerman, T.P. Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger. J. Geophys. Res. 2009, 114, D00–E06.
[29]  Dubovik, O.; Holben, B.; Eck, T.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608, doi:10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2.
[30]  Reid, J.S.; Hyer, E.J.; Johnson, R.S.; Holben, B.N.; Yokelson, R.J.; Zhang, J.; Campbell, J.R.; Christopher, S.A.; Di Girolamo, L.; Giglio, L.; et al. Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmos. Res. 2013, 122, 403–468, doi:10.1016/j.atmosres.2012.06.005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133