全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Aqueous Microwave-Assisted Solid-Phase Synthesis Using Boc-Amino Acid Nanoparticles

DOI: 10.3390/app3030614

Keywords: aqueous synthesis, solid-phase peptide synthesis, microwave assisted synthesis, nanoparticles, Boc chemistry

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have previously developed water-based microwave (MW)-assisted peptide synthesis using Fmoc-amino acid nanopaticles. It is an organic solvent-free, environmentally friendly method for peptide synthesis. Here we describe water-based MW-assisted solid-phase synthesis using Boc-amino acid nanoparticles. The microwave irradiation allowed rapid solid-phase reaction of nanoparticle reactants on the resin in water. We also demonstrated the syntheses of Leu-enkephalin, Tyr-Gly-Gly-Phe-Leu-OH, and difficult sequence model peptide, Val-Ala-Val-Ala-Gly-OH, using our water-based MW-assisted protocol with Boc-amino acid nanoparticles.

References

[1]  Polshettiwar, V.; Varma, R.S. Environmentally Benign Chemical Synthesis via Mechanochemical Mixing and Mirowave Irradiation. In Eco-Friendly Synthesis of Fine Chemicals; Ballin, R., Ed.; RSC publishing: Cambridge, UK, 2009; pp. 275–292.
[2]  Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998.
[3]  Winterton, N. Twelve more green chemistry principles. Green Chem. 2001, 3, G73–G75, doi:10.1039/b110187k.
[4]  Sheldon, R.A. The E factor: Fifteen years on. Green Chem. 2007, 9, 1273–1283, doi:10.1039/b713736m.
[5]  Hojo, K.; Maeda, M.; Kawasaki, K. A new water-soluble N-protecting group, 2-[phenyl(methyl)sulfonio]ethyloxycarbonyl tetrafluoroborate, and its application to solid phase peptide synthesis in water. J. Pept. Sci. 2001, 7, 615–618.
[6]  Hojo, K.; Maeda, M.; Kawasaki, K. A water-soluble N-protecting group, 2-[phenyl(methyl)sulfonio]ethoxycarbonyl tetrafluoroborate, and its application to peptide synthesis. Tetrahedron 2004, 60, 1875–1866.
[7]  Hojo, K.; Maeda, M.; Kawasaki, K. 2-(4-Sulfophenyl)ethoxycarbonyl group: A new water-soluble N-protecting group and its application to solid-phase peptide synthesis in water. Tetrahedron Lett. 2004, 45, 9293–9295, doi:10.1016/j.tetlet.2004.10.095.
[8]  Hojo, K.; Ichikawa, H.; Maeda, M.; Kida, S.; Fukumori, Y.; Kawasaki, K. Solid-phase peptide synthesis using nanoparticulate amino acids in water. J. Pept. Sci. 2007, 13, 493–497, doi:10.1002/psc.874.
[9]  Hojo, K.; Ichikawa, H.; Fukumori, Y.; Kawasaki, K. Development of a method for solid-phase peptide synthesis in water. Int. J. Pept. Res. Ther. 2008, 14, 373–380, doi:10.1007/s10989-008-9145-0.
[10]  Hojo, K.; Hara, A.; Kitai, H.; Onishi, M.; Ichikawa, H.; Fukumori, Y.; Kawasaki, K. Development of a method for environmentally friendly chemical peptide synthesis in water using water-dispersible amino acid nanoparticles. Chem. Cent. J. 2011, 5, 49, doi:10.1186/1752-153X-5-49.
[11]  Hojo, K.; Ichikawa, H.; Onishi, M.; Fukumori, Y.; Kawasaki, K. Peptide synthesis “in water” by a solution-phase method using water-dispersible nanoparticle Boc-amino acids. J. Pept. Sci. 2011, 17, 487–492, doi:10.1002/psc.1367.
[12]  McKay, F.C.; Albertson, W.F. New Amine-masking groups for peptide synthesis. J. Am. Chem. Soc. 1957, 79, 4686–4690, doi:10.1021/ja01574a029.
[13]  Carpino, L.A.; Han, G. The 9-fluorenylmethoxycarbonyl function, a new base-sensitive. Amino-protecting group. J. Am. Chem. Soc. 1970, 92, 5748–5749, doi:10.1021/ja00722a043.
[14]  Kappe, C.O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley-VCH: Weinheim, Germany, 2005.
[15]  Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 2004, 43, 6250–6284, doi:10.1002/anie.200400655.
[16]  Lidstr?m, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis—A review. Tetrahedron 2001, 57, 9225–9283, doi:10.1016/S0040-4020(01)00906-1.
[17]  Olivos, H.J.; Alluri, P.G.; Reddy, M.M.; Salony, D.; Kodadek, T. Microwave-assisted solid-phase syntheisis of peptides. Org. Lett. 2002, 4, 4057–4059, doi:10.1021/ol0267578.
[18]  Erdélyi, M.; Gogoll, A. Rapid microwave-assisted solid-phase peptide synthesis. Synthesis 2002, 11, 1592–1596.
[19]  Yu, H.M.; Chen, S.T.; Wang, J.T. Enhanced coupling efficiency in solid-phase peptide synthesis by microwave irradiation. J. Org. Chem. 1992, 57, 4781–4784, doi:10.1021/jo00044a001.
[20]  Collins, J.M.; Collins, M.J. Novel method for enhanced solid-phase peptide synthesis using microwave energy. Biopolymers 2003, 71, 361–366.
[21]  Murray, J.K.; Gellman, D.H. Application of microwave irradiation to the synthesis of 14-helical β-peptides. Org. Lett. 2005, 7, 1517–1520, doi:10.1021/ol0501727.
[22]  Bacsa, B.; Horvati, K.; Bosze, S.; Andreae, F.; Kappe, C.O. Solid-phase synthesis of difficult peptide sequences at elevated temperatures: A critical comparison of microwave and conventional heating technologies. J. Org. Chem. 2008, 73, 7532–7542, doi:10.1021/jo8013897.
[23]  Galanis, A.S.; Albericio, F.; Gr?tli, M. Solid-phase peptide synthesis in water using microwave assisted heating. Org. Lett. 2009, 20, 4488–4491, doi:10.1021/ol901893p.
[24]  Hojo, K.; Ichikawa, H.; Hara, A.; Onishi, M.; Kawasaki, K.; Fukumori, Y. Aqueous microwave-assisted solid-phase peptide synthesis using Fmoc strategy: In-water synthesis of “difficult sequences”. Protein Pept. Lett. 2012, 19, 1231–1236, doi:10.2174/092986612803217114.
[25]  Kaiser, E.; Colescott, R.L.; Bossinger, C.D.; Cook, P.I. Color test for detection of free terminal amino groups in the solid phase synthesis of peptides. Anal. Biochem. 1970, 34, 595–598, doi:10.1016/0003-2697(70)90146-6.
[26]  Bayer, E. Towards the chemical synthesis of proteins. Angew. Chem. Int. Ed. 1991, 30, 113–129, doi:10.1002/anie.199101133.
[27]  Rink, H. Solid-phase synthesis of protected peptide fragments using a trialkoxy-diphenyl-methylester resin. Tetrahedron Lett. 1987, 28, 3787–3790, doi:10.1016/S0040-4039(00)96384-6.
[28]  Rabinow, B.E. Nanosuspensions in drug delivery. Nat. Rev. Discov. 2004, 3, 785–795, doi:10.1038/nrd1494.
[29]  Liversidge, G.G.; Conzentino, P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int. J. Pharm. Sci. 1995, 125, 309–313, doi:10.1016/0378-5173(95)00148-C.
[30]  Liversidge, G.G.; Cundy, K.C. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int. J. Pharm. Sci. 1995, 125, 91–97, doi:10.1016/0378-5173(95)00122-Y.
[31]  Sheehan, J.C.; Hlavka, J.J. The use of water-soluble and basic carbodiimides in peptide synthesis. J. Org. Chem. 1956, 21, 439–441, doi:10.1021/jo01110a017.
[32]  Kaminski, Z.J.; Paneth, P.; Rudzinski, J.A. Study on the activation of carboxylic acids by means of 2-chloro-4,6-dimethoxy-1,3,5-triazine and 2-chloro-4,6-diphenoxy-1.3.5-triazine. J. Org. Chem. 1998, 63, 4248–4225, doi:10.1021/jo972020y.
[33]  Kunishima, M.; Kawachi, C.; Morita, J.; Terao, K.; Iawasaki, F.; Tani, S. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride: An efficient condensing agent leading to the formulation of amide and esters. Tetrahedron 1996, 55, 13159–13179.
[34]  Staros, J.V.; Wright, R.W.; Swingle, D.M. Enhancement by N-hydroxy-sulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal. Biochem. 1986, 156, 220–222, doi:10.1016/0003-2697(86)90176-4.
[35]  Sheppard, R.C.; Williams, B.J. Acid-labile resin linkage agent for use in solid phase peptide synthesis. Int. J. Pept. Protein Res. 1982, 20, 451–454, doi:10.1111/j.1399-3011.1982.tb03067.x.
[36]  Ajikumar, P.K.; Devaky, K.S. Solid phase synthesis of hydrophobic difficult sequence peptides on BDDMA-PS support. J. Pept. Sci. 2001, 7, 641–649.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133