全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Routine Production of 89Zr Using an Automated Module

DOI: 10.3390/app3030593

Keywords: 89Zr, isotope production, automation, cyclotron, positron emission tomography

Full-Text   Cite this paper   Add to My Lib

Abstract:

89Zr has emerged as a useful radioisotope for targeted molecular imaging via positron emission tomography (PET) in both animal models and humans. This isotope is particularly attractive for cancer research because its half-life ( t1/2 = 3.27 days) is well-suited for in vivo targeting of macromolecules and nanoparticles to cell surface antigens expressed by cancer cells. Furthermore, 89Zr emits a low-energy positron ( Eβ+,mean = 0.40 MeV), which is favorable for high spatial resolution in PET, with an adequate branching ratio for positron emission (BR = 23%). The demand for 89Zr for research purposes is increasing; however, 89Zr also emits significant gamma radiation ( Γ15 keV = 6.6 R×cm 2/mCi×h), which makes producing large amounts of this isotope by hand unrealistic from a radiation safety standpoint. Fortunately, a straightforward method exists for production of 89Zr by bombarding a natural Y target in a biomedical cyclotron and then separation of 89Zr from the target material by column chromatography. The chemical separation in this method lends itself to remote processing using an automated module placed inside a hot cell. In this work, we have designed, built and commissioned a module that has performed the chemical separation of 89Zr safely and routinely, at activities in excess of 50 mCi, with radionuclidic purity > 99.9% and satisfactory effective specific activity (ESA).

References

[1]  Ikotun, O.F.; Lapi, S.E. The rise of metal radionuclides in medical imaging: Copper-64, Zirconium-89 and Yttrium-86. Future Med. Chem. 2011, 3, 599–621, doi:10.4155/fmc.11.14.
[2]  Wadas, T.J.; Wong, E.H.; Weisman, G.R.; Anderson, C.J. Coordinating radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT imaging of disease. Chem. Rev. 2010, 110, 2858–2902, doi:10.1021/cr900325h.
[3]  Holland, J.P.; Williamson, M.J.; Lewis, J.S. Unconventional nuclides for radiopharmaceuticals. Mol. Imag. 2010, 9, 1–20.
[4]  Nayak, T.K.; Brechbiel, M.W. Radioimmunoimaging with longer-lived positron-emitting radionuclides: Potentials and challenges. Bioconj. Chem. 2009, 20, 825–841, doi:10.1021/bc800299f.
[5]  Anderson, C.J.; Welch, M.J. Radiometal-labeled agents (non-technetium) for diagnostic imaging. Chem. Rev. 1999, 99, 2219–2234, doi:10.1021/cr980451q.
[6]  PubMed Online Database. Available online: http://www.ncbi.nlm.nih.gov/pubmed/ (accessed on 3 May 2013).
[7]  Vugts, D.J.; Visser, G.W.M.; van Dongen, G.A.M.S. 89Zr-PET radiochemistry in the development and application of therapeutic monoclonal antibodies and other biologicals. Curr. Top. Med. Chem. 2013, 13, 446–457.
[8]  Deri, M.A.; Zeglis, B.M.; Francesconi, L.C.; Lewis, J.S. PET imaging with 89Zr: From radiochemistry to the clinic. Nucl. Med. Biol. 2013, 40, 3–14, doi:10.1016/j.nucmedbio.2012.08.004.
[9]  Severin, G.W.; Engle, J.W.; Barnhart, T.E.; Nickles, R.J. 89Zr Radiochemistry for positron emission tomography. Med. Chem. 2011, 7, 389–394, doi:10.2174/157340611796799186.
[10]  Zhang, Y.; Hong, H.; Cai, W. PET tracers based on Zirconium-89. Curr. Radiopharm. 2011, 4, 131–139, doi:10.2174/1874471011104020131.
[11]  McCabe, K.E.; Wu, A.M. Positive progress in immunoPET—Not just a coincidence. Cancer Biother. Radiopharm. 2010, 25, 253–261, doi:10.1089/cbr.2010.0776.
[12]  Van Dongen, G.A.M.S.; Vosjan, M.J.W.D. Immuno-positron emission tomography: Shedding light on clinical antibody therapy. Can. Biother. Radiopharm. 2010, 25, 375–385, doi:10.1089/cbr.2010.0812.
[13]  Van Dongen, G.A.M.S.; Visser, G.W.M.; Lub-de Hooge, M.N.; de Vries, E.G.; Perk, L.R. Immuno-PET: A navigator in monoclonal antibody development and applications. Oncologist 2007, 12, 1379–1389, doi:10.1634/theoncologist.12-12-1379.
[14]  Verel, I.; Visser, G.W.M.; van Dongen, G.A.M.S. The promise of immuno-PET in radioimmunotherapy. J. Nucl. Med. 2005, 46, 164s–171s.
[15]  Disselhorst, J.A.; Brom, M.; Laverman, P.; Slump, C.H.; Boerman, O.C.; Oyen, W.J.; Gotthardt, M.; Visser, E.P. Image-quality assessment for several positron emitters using the nema nu 4–2008 standards in the siemens inveon small-animal pet scanner. J. Nucl. Med. 2010, 51, 610–617, doi:10.2967/jnumed.109.068858.
[16]  Smith, D.S.; Stabin, M.G. Exposure rate constants and lead shielding values for over 1,100 radionuclides. Health Phys. 2012, 102, 271–291.
[17]  Meijs, W.E.; Herscheid, J.D.M.; Haisma, H.J.; Pinedo, H.M. Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89. Appl. Radiat. Isot. 1992, 43, 1443–1447, doi:10.1016/0883-2889(92)90170-J.
[18]  Kasbollah, A.; Eu, P.; Cowell, S.; Deb, P. Review on production of 89Zr in a medical cyclotron for PET radiopharmaceuticals. J. Nucl. Med. Technol. 2013, 41, 35–41, doi:10.2967/jnmt.112.111377.
[19]  National Nuclear Data Center (NNDC). Available online: http://www.nndc.bnl.gov (accessed on 4 July 2013).
[20]  Walther, M.; Gebhardt, P.; Grosse-Gehling, P.; Würbach, L.; Irmler, I.; Preusche, S.; Khalid, M.; Opfermann, T.; Kamradt, T.; Steinbach, J.; et al. Implementation of 89Zr production and in vivo imaging of B-cells in mice with 89Zr-labeled anti-B-cell antibodies by small animal PET/CT. Appl. Radiat. Isot. 2011, 69, 852–857, doi:10.1016/j.apradiso.2011.02.040.
[21]  Dutta, B.; Maiti, M.; Lahiri, S. Production of 88,89Zr by proton induced activation of natY and separation by SLX and LLX. J. Radioanal. Nucl. Chem. 2009, 281, 663–667, doi:10.1007/s10967-009-0051-5.
[22]  Kandil, S.A.; Scholten, B.; Saleh, Z.A.; Youssef, A.M.; Qaim, S.M.; Coenen, H.H. A comparative study on the separation of radiozirconium via ion-exchange and solvent extraction techniques, with particular reference to the production of 88Zr and 89Zr in proton induced reactions on yttrium. J. Radioanal. Nucl. Chem. 2007, 274, 45–52, doi:10.1007/s10967-006-6892-2.
[23]  Holland, J.P.; Sheh, Y.; Lewis, J.S. Standardized methods for the production of high specific-activity zirconium-89. Nucl. Med. Biol. 2005, 36, 729–739, doi:10.1016/j.nucmedbio.2009.05.007.
[24]  Verel, I.; Visser, G.W.M.; Boellaard, R.; Stigter-van Walsum, M.; Snow, G.B.; van Dongen, G.A. 89Zr immuno-PET: Comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J. Nucl. Med. 2003, 44, 1271–1281.
[25]  Meijs, W.E.; Herscheid, J.D.M.; Haisma, H.J.; van Langevelde, F.; Wijbrandts, R.; van Leuffen, P.J.; Mooy, R.; Pinedo, H.M. Production of highly pure no-carrier added 89Zr for the labelling of antibodies with a positron emitter. Appl. Radiat. Isot. 1994, 45, 1143–1147, doi:10.1016/0969-8043(94)90029-9.
[26]  DeJesus, O.T.; Nickles, R.J. Production and purification of 89Zr, a potential PET antibody label. Appl. Radiat. Isot. 1990, 41, 789–790, doi:10.1016/0883-2889(90)90030-K.
[27]  Link, J.M.; Krohn, K.A.; Eary, J.F.; Kishore, R.; Lewellen, T.K.; Johnson, M.W.; Badger, C.C.; Richter, K.Y.; Nelp, W.B. 89Zr for antibody labeling and positron emission tomography. J. Label. Compd. Radiopharm. 1986, 23, 1297–1298.
[28]  The Stopping and Range of Ions in Matter. version SRIM-2008, SRIM Company, Chester, MD, USA, 2008.
[29]  Khandaker, M.U.; Kim, K.; Lee, M.-W.; Kim, K.-S.; Kim, G.; Otuka, N. Investigations of 89Y(p,x)86,88,89gZr, 86m+g,87g,87m,88gY, 85gSr, and 84gRb nuclear processes up to 42 MeV. Nucl. Instr. Meth. Phys. Res. B 2012, 271, 72–81, doi:10.1016/j.nimb.2011.11.009.
[30]  Uddin, M.S.; Hagiwara, M.; Baba, M. Experimental studies on excitation functions of the proton-induced activation reactions on yttrium. Appl. Radiat. Isot. 2005, 63, 367–374, doi:10.1016/j.apradiso.2005.04.006.
[31]  Michel, R.; Bodemann, R.; Busemann, H.; Daunke, R.; Gloris, M.; Lange, H.-J.; Klug, B.; Krins, A.; Leya, I.; Lüpke, M.; et al. Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au. Nucl. Instr. Meth. Phys. Res. B 1997, 129, 153–193, doi:10.1016/S0168-583X(97)00213-9.
[32]  Mustafa, M.G.; West, H.I., Jr.; O’Brien, H.; Lanier, R.G.; Benhamou, M.; Tamura, T. Measurements and a direct-reaction—plus-Hauser-Feshbach analysis of 89Y(p,n)89Zr, 89Y(p,2n)88[sic], and 89Y(p,pn)88Y reactions up to 40 MeV. Phys. Rev. C 1988, 38, 1624–1637, doi:10.1103/PhysRevC.38.1624.
[33]  Birattari, C.; Gadioli, E.; Gadioli Erba, E. Pre-equilibrium processes in (P,N) reactions. Nucl. Phys. A 1973, 201, 579–592, doi:10.1016/0375-9474(73)90322-9.
[34]  Church, L.B.; Caretto, A.A., Jr. Study of (p,xn) Reactions at 400 MeV. Phys. Rev. 1969, 178, 1732–1742, doi:10.1103/PhysRev.178.1732.
[35]  Saha, G.B.; Porile, N.T.; Yaffe, L. (p,xn) and (p,pxn) reactions of Yttrium-89 with 5–85 MeV protons. Phys. Rev. 1966, 144, 962–971, doi:10.1103/PhysRev.144.962.
[36]  Blosser, H.G.; Handley, T.H. Survey of (P,N) reactions at 12 MeV. Phys. Rev. 1955, 100, 1340–1344, doi:10.1103/PhysRev.100.1340.
[37]  Lahiri, S.; Mukhopadhyay, B.; Das, N.A. Simultaneous production of 89Zr and 90,91m,92mNb in alpha-particle activated yttrium and their separation by HDEHP. Appl. Radiat. Isot. 1997, 48, 883–886, doi:10.1016/S0969-8043(96)00338-7.
[38]  Zweit, J.; Downey, S.; Sharma, H.L. Production of no-carrier-added zirconium-89 for positron emission tomography. Appl. Radiat. Isot. 1991, 42, 199–201, doi:10.1016/0883-2889(91)90074-B.
[39]  Herscheid, J.D.M.; Vos, C.M.; Hoekstra, A. Manganese-52m for direct application: A new 52Fe/52mMn generator based on a hydroxamate resin. Int. J. Appl. Radiat. Isot. 1983, 34, 883–886, doi:10.1016/0020-708X(83)90147-3.
[40]  Fadeeva, V.I.; Tikhomirova, T.I.; Yuferova, I.B.; Kudryavtsev, G.V. Preparation, properties and analytical applications of silica with chemically grafted hydroxamic acid groups. Anal. Chim. Acta 1989, 219, 201, doi:10.1016/S0003-2670(00)80351-7.
[41]  Kume, M.; Carey, P.C.; Gaehle, G.G.; Madrid, E.; Voller, T.; Margenau, W.; Welch, M.J.; Lapi, S.E. A semi-automated system for the routine production of copper-64. Appl. Radiat. Isot. 2012, 70, 1803–1806, doi:10.1016/j.apradiso.2012.03.009.
[42]  Burke, P.; Golovko, O.; Clark, J.C.; Aigbirhio, F.I. An automated method for regular productions of copper-64 for PET radiopharmaceuticals. Inorg. Chim. Acta 2010, 363, 1316–1319, doi:10.1016/j.ica.2010.01.038.
[43]  Matarrese, M.; Bedeschi, P.; Scardaoni, R.; Sudati, F.; Savi, A.; Pepe, A.; Masiello, V.; Todde, S.; Gianolli, L.; Messa, C.; et al. Automated production of copper radioisotopes and preparation of high specific activity [64Cu]Cu-ATSM for PET studies. Appl. Radiat. Isot. 2010, 68, 5–13, doi:10.1016/j.apradiso.2009.08.010.
[44]  Welch, M.J.; Tang, L.L.W.; Gaehle, G.G.; Lewis, J.S. Automated separation, purification and labeling systems for 60Cu, 61Cu and 64Cu Radionuclides and Recovery Thereof. U.S. Patent No. US 2006/0004491 A1, 5 January 2006.
[45]  Nagatsu, K.; Fukada, M.; Minegishi, K.; Suzuki, H.; Fukumura, T.; Yamazaki, H.; Suzuki, K. Fully automated production of iodine-124 using a vertical beam. Appl. Radiat. Isot. 2011, 69, 146–157, doi:10.1016/j.apradiso.2010.09.010.
[46]  Chattopadhyay, S.; Barua, L.; De, A.; Das, S.S.; Kuniyil, R.; Bhaskar, P.; Pal, S.S.; Sarkar, S.K.; Das, M.K. A computerized compact module for separation of 99mTc-radionuclide from molybdenum. Appl. Radiat. Isot. 2012, 70, 2631–2637, doi:10.1016/j.apradiso.2012.07.013.
[47]  Park, L.S.; Szajek, L.P.; Wong, K.J.; Plascjak, P.S.; Garmestani, K.; Googins, S.; Eckelman, W.C.; Carrasquillo, J.A.; Paik, C.H. Semi-automated 86Y purification using a three-column system. Nucl. Med. Biol. 2004, 31, 297–301, doi:10.1016/j.nucmedbio.2003.07.002.
[48]  Wooten, A.L.; Schweitzer, G.D.; Lawrence, L.A.; Madrid, E.; Lapi, S.E. An automated system for production of 89Zr. AIP Conf. Proc. 2012, 1509, 201–205.
[49]  Siikanen, J.; Peterson, M.; Tran, T.A.; Roos, P.; Ohlsson, T.; Sandell, A. A peristaltic pump driven 89Zr separation module. AIP Conf. Proc. 2012, 1509, 206–210.
[50]  Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements; Butterworth-Heinemann: Oxford, UK, 1997; p. 979.
[51]  Edraw Max. version 6.8.1. EdrawSoft Company, Hong Kong, 2013.
[52]  Ehmann, W.D.; Vance, D.E. Radiochemistry and Nuclear Methods of Analysis; Wiley: New York, NY, USA, 1991; pp. 92–93, 141–142.
[53]  Gritsyna, V.T.; Klyucharev, A.P.; Remaev, V.V.; Reshetova, L.N. Ratio of the cross sections for the production of the isomer and ground states of nuclei in the (p,n) reaction at the energies from the threshold to 20 MeV. Sov. Phys. JETP 1963, 17, 1186–1189.
[54]  Steyn, G.F.; Vermeulen, C.; Szelecsenyi, F.; Kovacs, Z.; Suzuki, K.; Fukumura, T.; Nagatsu, K. Excitation functions of proton induced reactions on 89Y and 93Nb with special emphasis on the production of selected radio-zirconiums. J. Kor. Phys. Soc. 2011, 59, 1991–1994, doi:10.3938/jkps.59.1991.
[55]  Omara, H.M.; Hassan, K.F.; Kandil, S.A.; Hegazy, F.E.; Saleh, Z.A. Proton induced reactions on 89Y with particular reference to the production of the medically interesting radionuclide 89Zr. Radiochim. Acta 2009, 97, 467–471, doi:10.1524/ract.2009.1645.
[56]  Tarkanyi, F.; Ditroi, F.; Takacs, S.; Csikai, J.; Mahunka, I.; Uddin, M.S.; Hagiwara, M.; Baba, M.; Ido, T.; Hermanne, A.; et al. Excitation functions for production of 88Zr and 88Y by proton and deuteron irradiation of Mo, Nb, Zr and Y. AIP Conf. Proc. 2005, 769, 1658–1661, doi:10.1063/1.1945326.
[57]  Zhao, W.; Shen, Q.; Lu, H.; Yu, W. Investigation of Y-89(p,n)Zr-89, Y-89(p,2n)Zr-88 and Y-89(p,pn)Y-88 reactions up to 22 MeV. Chin. J. Nucl. Phys. (Beijing) .
[58]  Levkovskij, V.N. Middle Mass Nuclides (A = 40–100) Activation Cross-sections by Medium Energy (E = 10–50 MeV) Protons and Alpha Particles (Experiment and Systematics). Inter. Vesi. (Moscow) 1991.
[59]  Regnier, S.; Lavielle, B.; Simonoff, M.; Simonoff, G.N. Nuclear reactions in Rb, Sr, Y and Zr targets. Phys. Rev. C 1982, 26, 931–943, doi:10.1103/PhysRevC.26.931.
[60]  Levenberg, I.; Pokrovsky, V.; Tarasova, L.; Simonoff, G.N. Reactions (p,pn), (p,2n) and (p,n) on Y-89 Induced by high-energy protons. Nucl. Phys. 1966, 81, 81–87.
[61]  Caretto, A.A.; Wiig, E.O. Interaction of Yttrium with protons of energy between 60 and 240 MeV. Phys. Rev. 1959, 115, 1238–1242, doi:10.1103/PhysRev.115.1238.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133