全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antioxidants  2013 

Relevance of the Mention of Antioxidant Properties in Yogurt Labels: In Vitro Evaluation and Chromatographic Analysis

DOI: 10.3390/antiox2020062

Keywords: yogurt, fruits, antioxidant activity, sugars, tocopherols

Full-Text   Cite this paper   Add to My Lib

Abstract:

The purpose of the inclusion of fruit (natural additives) in yogurt aims to increase its antioxidant activity and functionality. Herein, a comparative study of the antioxidant potential of yogurts with pieces of various fruits was performed, including yogurts with mention of antioxidant properties in the label. Free radicals scavenging activity, reducing power and inhibition of lipid peroxidation were evaluated by in vitro assays, as were the contents in antioxidants such as phenolics, flavonoids, sugars and tocopherols. After analyzing thirteen yogurts containing fruit pieces and a natural one (control), the most interesting were yogurts with pieces of berries (for phenolics, flavonoids and 2,2-dipheny-1-picrylhydrazyl (DPPH) scavenging activity), pineapple (for reducing power), blackberry (for β-carotene bleaching inhibition), blackberry “antioxidant” (for tocopherols) and cherry (for sugars). The mention of “antioxidant” in the label was relevant for tocopherols, sugars, DPPH scavenging activity and reducing power. No synergisms were observed in yogurts prepared with pieces of different fruits. Nevertheless, the addition of fruit pieces to yogurt was favorable for antioxidant content, increasing the protection of the consumer against diseases related to oxidative stress.

References

[1]  Nakasaki, K.; Yanagisawa, M.; Kobayashi, K. Microbiological quality of fermented milk produced by repeated-batch culture. J. Biosci. Bioeng. 2008, 105, 73–76.
[2]  Shori, A.B.; Baba, A.S. Comparative antioxidant activity, proteolysis and in vitro α-amylase and α-glucosidase inhibition of Allium sativum-yogurts made from cow and camel milk. J. Saudi Chem. Soc. 2011, doi:10.1016/j.jscs.2011.09.014.
[3]  Amirdivani, S.; Baba, A.S. Changes in yogurt fermentation characteristics, and antioxidant potential and in vitro inhibition of angiotensin-1 converting enzyme upon the inclusion of peppermint, dill and basil. Food Sci. Technol. 2011, 44, 1458–1464.
[4]  Penney, V.; Henderson, G.; Blum, C.; Johnson-Green, P. The potential of phytopreservatives and nisin to control microbial spoilage of minimally processed fruit yogurts. Innov. Food Sci. Emerg. Technol. 2004, 5, 369–375, doi:10.1016/j.ifset.2003.10.006.
[5]  Co?ssonl, J.D.; Travaglia, F.; Piana, G.; Capasso, M.; Arlorio, M. Euterpe oleracea juice as a functional pigment for yogurt. Food Res. Int. 2005, 38, 893–897, doi:10.1016/j.foodres.2005.03.009.
[6]  Obón, J.M.; Díaz-García, M.C.; Castellar, M.R. Red fruit juice quality and authenticity control by HPLC. J. Food Comp. Anal. 2011, 24, 760–771.
[7]  Trigueros, L.; Sayas-Barberá, E.; Pérez-álvarez, J.A.; Sendra, E. Use of date (Phoenix dactylifera L.) blanching water for reconstituting milk powder: Yogurt manufacture. Food Bioprod. Proc. 2012, 90, 506–514, doi:10.1016/j.fbp.2011.10.001.
[8]  García-Alonso, M.; Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Evaluation of the antioxidant properties of fruits. Food Chem. 2004, 84, 13–18, doi:10.1016/S0308-8146(03)00160-2.
[9]  Oyewole, O.B. Lactic fermented foods in Africa and their benefits. Food Control 1997, 8, 289–297, doi:10.1016/S0956-7135(97)00075-3.
[10]  Ramchandran, L.; Nagendra, P.S. Characterization of functional, biochemical and textural properties of synbiotic low-fat yogurts during refrigerated storage. Food Sci. Technol. 2010, 43, 819–827.
[11]  Cevallos-Casals, B.A.; Byrne, D.; Okie, H.R.; Cisneros-Zevallos, L. Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chem. 2006, 96, 273–280, doi:10.1016/j.foodchem.2005.02.032.
[12]  Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G.R. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007, 102, 777–783, doi:10.1016/j.foodchem.2006.06.021.
[13]  Bursal, E.; Gül?in, I. Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food Res. Int. 2011, 44, 1482–1489, doi:10.1016/j.foodres.2011.03.031.
[14]  Fernandes, V.C.; Domingues, V.F.; Freitas, V.; Delerue-Matos, C.; Mateus, N. Strawberries from integrated pest management and organic farming: Phenolic composition and antioxidant properties. Food Chem. 2012, 134, 1926–1931.
[15]  Flis, S.; Jastrzebski, Z.; Namiesnik, J.; Arancibia-Avila, P.; Toledo, F.; Leontowicz, H.; Leontowicz, M.; Suhaj, M.; Trakhtenberg, S.; Gorinsteing, S. Evaluation of inhibition of cancer cell proliferation in vitro with different berries and correlation with their antioxidant levels by advanced analytical methods. J Pharmaceut. Biomed. Anal. 2012, 62, 68–78.
[16]  Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-álvarez, J.A.; Viuda-Martos, M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem. 2012, 135, 1520–1526.
[17]  Barros, L.; Heleno, S.A.; Carvalho, A.M.; Ferreira, I.C.F.R. Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. Food Sci. Technol. 2010, 42, 544–550.
[18]  Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012, 50, 191–197, doi:10.1016/j.fct.2011.10.056.
[19]  Prior, R.L.; Wu, X.L.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302, doi:10.1021/jf0502698.
[20]  Karadag, A.; Ozcelik, B.; Saner, S. Review of methods to determine antioxidant capacities. Food Anal. Meth. 2009, 2, 41–60, doi:10.1007/s12161-008-9067-7.
[21]  ?í?, M.; ?í?ová, H.; Denev, P.; Kratchanova, M.; Slavov, A.; Lojek, A. Different methods for control and comparison of the antioxidant properties of vegetables. Food Control 2010, 21, 518–523, doi:10.1016/j.foodcont.2009.07.017.
[22]  Dorman, H.J.D.; Hiltunen, R. Antioxidant and pro-oxidant in vitro evaluation of water-soluble food-related botanical extracts. Food Chem. 2011, 129, 1612–1618, doi:10.1016/j.foodchem.2011.06.017.
[23]  Ye, M.; Ren, L.; Wu, Y.; Wang, Y.; Liu, Y. Quality characteristics and antioxidant activity of hickory-black soybean yogurt. Food Sci. Technol. 2013, 51, 314–318.
[24]  Nayaka, M.A.H.; Sathisha, U.V.; Manohar, M.P.; Chandrashekar, K.B.; Dharmesh, S.M. Cytoprotective and antioxidant activity studies of jaggery sugar. Food Chem. 2009, 115, 113–118, doi:10.1016/j.foodchem.2008.11.067.
[25]  Sia, J.; Yee, H.B.; Santos, J.H.; Abdurrahman, M.K.A. Cyclic voltammetric analysis of antioxidant activity in cane sugars and palm sugars from Southeast Asia. Food Chem. 2010, 118, 840–846.
[26]  Alrahmany, R.; Tsopmo, A. Role of carbohydrases on the release of reducing sugar, total phenolics and on antioxidant properties of oat bran. Food Chem. 2012, 132, 413–418, doi:10.1016/j.foodchem.2011.11.014.
[27]  Kim, T.S.; Decker, E.A.; Lee, J. Antioxidant capacities of α-tocopherol, trolox, ascorbic acid, and ascorbyl palmitate in riboflavin photosensitized oil-in-water emulsions. Food Chem. 2012, 133, 68–75, doi:10.1016/j.foodchem.2011.12.069.
[28]  Zhang, P.; Omaye, S.T. Antioxidant and prooxidant roles for β-carotene, α-tocopherol and ascorbic acid in human lung cells. Toxicol. In Vitro 2001, 15, 13–24, doi:10.1016/S0887-2333(00)00054-0.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133