The artichoke ( Cynara cardunculus L. subsp. scolymus L.), the cultivated cardoon ( Cynara cardunculus var. altilis DC.) and the wild cardoon ( Cynara cardunculus var. sylvestris L.) are species widely distributed in the Mediterranean area. The aim of this research was to evaluate the antioxidant properties of seeds from lines of artichoke and cultivated and wild cardoon in both aqueous-organic extracts and their residues by FRAP (Ferric Reducing Antioxidant Power) and TEAC (Trolox Equivalent Antioxidant Capacity) evaluations. Both artichoke and cardoon seeds are a good source of antioxidants. Among artichoke seeds, hydrolysable polyphenols contribution to antioxidant properties ranged from 41% to 78% for FRAP values and from 17% to 37% for TEAC values. No difference between cultivated and wild cardoon in antioxidant properties are reported. Our results could provide information about the potential industrial use and application of artichoke and/or cardoon seeds.
References
[1]
Raccuia, S.A.; Mainolfi, A.; Mandolino, G.; Melilli, M.G. Genetic diversity in Cynara cardunculus revealed by AFLP markers: Comparison between cultivars and wild types from Sicily. Plant Breed 2004, 123, 280–284.
[2]
Acquadro, A.; Portis, E.; Albertini, E.; Lanteri, S. M-AFLP-based protocol for microsatellite loci isolation in Cynara cardunculus L. (Asteraceae). Mol. Ecol. Notes 2005, 5, 272–274, doi:10.1111/j.1471-8286.2005.00897.x.
[3]
Sonnante, G.; Pignone, D.; Hammer, K. The domestication of artichoke and cardoon: From Roman times to the genomic age. Ann. Bot. 2007, 100, 1095–1100, doi:10.1093/aob/mcm127.
[4]
Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Foods 2009, 1, 131–144.
[5]
Ceccarelli, N.; Curadi, M.; Picciarelli, P.; Martelloni, L.; Sbrana, C.; Giovannetti, M. Globe artichoke as functional food. Mediter. J. Nutr. Metab. 2010, 3, 197–201, doi:10.1007/s12349-010-0021-z.
[6]
Christaki, E.; Bonos, E.; Florou-Paneri, P. Nutritional and functional properties of Cynara crops (globe artichoke and cardoon) and their potential applications: A review. Int. J. Appl. Sci. Technol. 2012, 2, 64–70.
[7]
Jiménez-Escrig, A.; Dragsted, L.O.; Daneshvar, B; Pulido, R.; Saura-Calixto, F. In vitro antioxidant activities of edible artichoke (Cynara scolymus L.) and effect on biomarkers of antioxidants in rats. J. Agric. Food Chem. 2003, 51, 5540–5545.
[8]
Di Venere, D.; Linsalata, V.; Calabrese, N.; Cardinali, A.; Sergio, L. Biochemical characterization of wild and cultivated cardoon accessions. Acta Hort. 2005, 681, 523–528.
[9]
Kuki?, J.; Popovi?, V.; Petrovi?, S.; Mucaji, P.; ?iri?, A.; Stojkovi?, D.; Sokovi?, M. Antioxidant and antimicrobial activity of Cynara cardunculus extracts. Food Chem. 2008, 107, 861–868.
[10]
Velez, Z.; Campinho, M.A.; Guerra, A.R.; García, L.; Ramos, P.; Guerreiro, O.; Felício, L.; Schmitt, F.; Duarte, M. Biological Characterization of Cynara cardunculus L. Methanolic extracts: Antioxidant, anti-proliferative, anti-migratory and anti-angiogenic activities. Agriculture 2012, 2, 472–492, doi:10.3390/agriculture2040472.
[11]
Pandino, G.; Lombardo, S.; Williamson, G.; Mauromicale, G. Polyphenol profile and content in wild and cultivated Cynara cardunculus L. Ital. J. Agron. 2012, 7, e35.
[12]
Falleh, H.; Ksouri, R.; Chaieb, K.; Karray-Bouraoui, N.; Trabelsi, N.; Boulaaba, M.; Abdelly, C. Phenolic composition of Cynara cardunculus L. organs, and their biological activities. C. R. Biol. 2008, 331, 372–379, doi:10.1016/j.crvi.2008.02.008.
[13]
Georgieva, E.; Karamalakova, Y.; Nikolova, G.; Grigorov, B.; Pavlov, D.; Gadjeva, V.; Zheleva, A. Radical scavenging capacity of seeds and leaves ethanol extracts of Cynara scolymus L.—A comparative study. Biotechnol. Biotechnol. Equip 2012, 151–155, doi:10.5504/50yrtimb.2011.0028.
[14]
Foti, S.; Mauromicale, G.; Raccuia, S.A.; Fallico, B.; Fanella, F.; Maccarone, E. Possible alternative utilization of Cynara spp. I. Biomass, grain yield and chemical composition of grain. Ind. Crop. Prod. 1999, 10, 219–228, doi:10.1016/S0926-6690(99)00026-6.
[15]
Raccuia, S.A.; Melilli, M.G. Biomass and grain oil yields in Cynara cardunculus L. genotypes grown in a Mediterranean environment. Field Crop Res. 2007, 101, 187–197, doi:10.1016/j.fcr.2006.11.006.
[16]
Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food source and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747.
[17]
Scalbert, A.; Manach, C.; Morand, C.; Remesy, C. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306, doi:10.1080/1040869059096.
[18]
Hartzfeld, P.W.; Forkner, R.; Hunter, M.D.; Hagerman, A.E. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. J. Agric. Food Chem. 2002, 50, 1785–1790.
[19]
Perez-Jimenez, J.; Saura-Calixto, F. Literature data may underestimate the actual antioxidant capacity of cereals. J. Agric. Food Chem. 2005, 53, 5036–5040, doi:10.1021/jf050049u.
[20]
Saura-Calixto, F.; Goni, I. Antioxidant capacity of the Spanish Mediterranean diet. Food Chem. 2006, 94, 442–447, doi:10.1016/j.foodchem.2004.11.033.
[21]
Diaz-Rubio, M.E.; Perez-Jimenez, J.; Saura-Calixto, F. Dietary fiber and antioxidant capacity in Fucus vesiculosus products. Int. J. Food Sci. Nutr. 2009, 2, 23–34.
[22]
Goni, I.; Diaz-Rubio, M.E.; Perez-Jimenez, J.; Saura-Calixto, F. Towards an update methodology for measurement of dietary fiber, including associated polyphenols, in food and beverages. Food Res. Int. 2009, 42, 840–846, doi:10.1016/j.foodres.2009.03.010.
[23]
Arranz, S.; Silván, J.M.; Saura-Calixto, F. Non extractable polyphenols, usually ignored, are the major part of dietary polyphenols: A study on the Spanish diet. Mol. Nutr. Food Res. 2010, 54, 1646–1658, doi:10.1002/mnfr.200900580.
[24]
Rufino, M.S.; Alves, R.E.; de Brito, E.S.; Pérez-Jimenez, J.; Saura-Calixto, F.; Mancini-Filo, J. Bioactive compounds and antioxidant capacity of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002, doi:10.1016/j.foodchem.2010.01.037.
[25]
Kristl, J.; Slekovec, M.; Tojnko, S.; Unuk, T. Extractable antioxidants and non-extractable phenolics in the total antioxidant activity of selected plum cultivars (Prunus domestica L.): Evolution during on-tree ripening. Food Chem. 2011, 125, 29–34, doi:10.1016/j.foodchem.2010.08.027.
[26]
Iqbal, S.; Bhanger, M.I.; Anwar, F. Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chem. 2005, 93, 265–272, doi:10.1016/j.foodchem.2004.09.024.
[27]
Gorinstein, S.; Vargas, O.J.M.; Jaramillo, N.O.; Salas, I.A.; Ayala, A.L.M.; Arincibia-Avila, P.; Toledo, F.; Katrich, E.; Trakhtenberg, S. The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. Eur. Food Res. Technol. 2007, 225, 321–328, doi:10.1007/s00217-006-0417-7.
[28]
Bennet, R.N.; Shiga, T.M.; Hassimoto, N.M.A.; Rosa, E.A.S.; Lajolo, F.M.; Cordenunsi, B.R. Phenolics and antioxidant properties of fruit pulp and cell wall fractions of postharvest banana (Musa acuminate Juss.) Cultivars. J. Agric. Food Chem. 2010, 54, 1646–1658.
[29]
Delgrado-Andrade, C.; Conde-Aguilera, J.A.; Haro, A.; de la Cueva, S.P.; Rufian-Henares, J.A. A combined procedure to evaluate the global antioxidant response of bread. J. Cereal Sci. 2010, 52, 239–246.
[30]
Tabernero, M.; Venema, K.; Maathuis, A.J.H.; Saura-Calixto, F.D. Metabolite production during in vitro colonic fermentation of dietary fiber: Analysis and comparison of two European diets. J. Agric. Food Chem. 2011, 59, 8968–8975.
[31]
Pérez-Jiménez, J.; Torres, J.L. Analysis of nonextractable phenolic compounds in foods: The current state of the art. J. Agric. Food Chem. 2011, 59, 12713–12724, doi:10.1021/jf203372w.
[32]
Saura-Calixto, F. Concept and health-related properties of nonextractable polyphenols: The missing dietary polyphenols. J. Agric. Food Chem. 2012, 60, 11195–11200, doi:10.1021/jf303758j.
[33]
Arranz, S.; Saura-Calixto, F.; Shaha, S.; Kroon, P.A. High contents of non extractable polyphenols in fruits suggest that polyphenol contents of plant foods have been underestimated. J. Agric. Food Chem. 2009, 57, 7298–7303.
[34]
Tarascou, I.; Souquet, J.M.; Mazauric, J.P.; Carrillo, S.; Coq, S.; Canon, F.; Fulcrand, H.; Cheynier, V. The hidden face of food phenolic composition. Arch. Biochem. Biophys. 2010, 501, 16–22.
[35]
Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604, doi:10.1021/jf000220w.
[36]
Peschel, W.; Sanchez-Rabaneda, F.; Diekmann, W.; Plescher, A.; Gartzia, I.; Jimenez, D.; Lamuela-Raventos, R.; Buxaderas, S.; Codina, C. An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem. 2006, 97, 137–150.
[37]
Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, bap024, doi:10.1093/database/bap024.
[38]
Durazzo, A.; Turfani, V.; Azzini, E.; Maiani, G.; Carcea, M. Phenols, lignans and antioxidant properties of legume and sweet chestnut flours. Food Chem. 2013, 140, 666–671.
[39]
Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The assay. Anal. Biochem. 1996, 239, 70–76.
[40]
Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402, doi:10.1021/jf9913458.
[41]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237, doi:10.1016/S0891-5849(98)00315-3.
[42]
Re?at Apak, R.; Gorinstein, S.; B?hm, V.; Schaich, K.M.; ?zyürek, M.; Kubilay Gü?lü, K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998, doi:10.1351/PAC-REP-12-07-15.
[43]
Schlesier, K.; Harwat, M.; Bohm, V.; Bitsch, R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002, 36, 177–187, doi:10.1080/10715760290006411.
[44]
Perez-Jimenez, J.; Arranz, S.; Tabernero, M.; Diaz-Rubio, M.E.; Serrano, J.; Goni, I.; Saura-Calixto, F. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurements and expression of results. Food Res. Int. 2008, 41, 274–285.
[45]
Luthria, D.L. Significance of sample preparation in developing analytical methodologies for accurate estimation of bioactive compounds in functional foods. J. Sci. Food. Agric. 2006, 86, 2266–2272, doi:10.1002/jsfa.2666.
[46]
Arranz, S.; Perez-Jimenez, J.; Saura-Calixto, F. Antioxidant capacity of walnut (Junglas regia L.): Contribution of oil and defatted matter. Eur. Food Res. Technol. 2011, 227, 425–431.
[47]
Saura-Calixto, F.; Serrano, J.; Goni, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007, 101, 492–501, doi:10.1016/j.foodchem.2006.02.006.