This paper summarizes the information on the occurrence of phenolic compounds in apple ( Malus x domestica Borkh.) fruit and juice, with special reference to their health related properties. As phytochemical molecules belonging to polyphenols are numerous, we will focus on the main apples phenolic compounds with special reference to changes induced by apple cultivar, breeding approaches, fruit postharvest and transformation into juice.
References
[1]
Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouysegu, L. Plant Polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. 2011, 50, 586–621, doi:10.1002/anie.201000044.
[2]
Harborne, J.B. Biochemistry of Phenolic Compounds; Academic Press: London, UK, 1964; pp. 511–543.
[3]
Bensath, A.; Ruysnyak, T.; Szent-Gy?rgii, A. Vitamine nature of flavones. Nature 1936, 138, 789–793, doi:10.1038/138789a0.
[4]
ScienceDirect Database. Available online: www.sciencedirect.com (accessed on 15 July 2013).
[5]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747.
[6]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009, 2, 270–278, doi:10.4161/oxim.2.5.9498.
[7]
Link, A.; Balaguer, F.; Goel, A. Cancer chemoprevention by dietary polyphenols: Promising role for epigenetics. Biochem. Pharmacol. 2010, 80, 1771–1792, doi:10.1016/j.bcp.2010.06.036.
[8]
Van Duynhovena, J.; Vaughana, E.E.; Jacobsa, D.M.; Kempermana, R.A.; van Velzena, E.J.J.; Grossa, G.; Rogera, L.C.; Possemiersd, S.; Smildec, A.K.; Doréb, J.; et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. USA 2011, 108, 4531–4538, doi:10.1073/pnas.1000098107.
[9]
Visioli, F.; Alarcón De La Lastra, C.; Andres-Lacueva, C.; Aviram, M.; Calhau, C.; Cassano, A.; D’Archivio, M.; Faria, A.; Favé, G.; Fogliano, V.; et al. Polyphenols and human health: A prospectus. Crit. Rev. Food Sci. Nut. 2011, 51, 524–546, doi:10.1080/10408391003698677.
[10]
Frei, B.; England, L.; Ames, B.N. Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Nat. Acad. Sci. USA 1989, 86, 6377–6638, doi:10.1073/pnas.86.16.6377.
[11]
Lambert, J.D.; Elias, R.J. Antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch. Biochem. Biophys. 2010, 501, 65–72, doi:10.1016/j.abb.2010.06.013.
[12]
Pan, M.H.; Lai, C.S.; Wu, J.C.; Ho, C.T. Epigenetic and diseases targets by polyphenols. Curr. Pharm. Des. 2013. in press.
[13]
Winkel-Shirley, B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 2002, 5, 218–223, doi:10.1016/S1369-5266(02)00256-X.
[14]
Lattanzio, V.; Lattanzio, V.M.T.; Cardinali, A. Phytochemistry: Role of Phenolics in the Resistance Mechanisms of Plants against Fungal Pathogens and Insects. In Phytochemistry: Advances in Research; Imperato, F., Ed.; Research Signpost: Kerala, India, 2006; pp. 23–67.
[15]
Food and Agriculture Organization (FAO). Available online: http://faostat3.fao.org/home/index.html (accessed on 15 July 2013).
[16]
Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350, doi:10.1016/j.foodchem.2011.04.079.
[17]
Iacopini, P.; Camangi, F.; Stefani, A.; Sebastiani, L. Antiradical potential of ancient Italian apple varieties of Malus x domestica Borkh. In a peroxynitrite-induced oxidative process. J. Food Comp. Anal. 2010, 23, 518–524, doi:10.1016/j.jfca.2009.05.004.
[18]
Minnocci, A.; Iacopini, P.; Martinelli, F.; Sebastiani, L. Micromorphological, biochemical, and genetic characterization of two ancient, late-bearing apple varieties. Eur. J. Hort. Sci. 2010, 75, 1–7.
[19]
Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000, 130, 2073–2085.
[20]
Cuthbertson, D.; Andrews, P.K.; Reganold, J.P.; Davies, N.M.; Lange, B.M. Utility of metabolomics toward assessing the metabolic basis of quality traits in apple fruit with an emphasis on antioxidants. J. Agric. Food Chem. 2012, 60, 8552–8560.
[21]
Vrhovsek, U.; Rigo, A.; Tonon, D.; Mattivi, F. Quantitation of polyphenols in different apple varieties. J. Agric. Food Chem. 2004, 52, 6532–6538, doi:10.1021/jf049317z.
[22]
McGhie, T.K.; Hunt, M.; Barnet, L.E. Cultivar and growing region determine the antioxidant polyphenolic concentration and composition of apples grown in New Zealand. J. Agric. Food Chem. 2005, 53, 3065–3070, doi:10.1021/jf047832r.
[23]
Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant activity of apple peels. J. Agric. Food Chem. 2003, 51, 609–614, doi:10.1021/jf020782a.
[24]
?ata, B.; Trampczynska, A.; Paczesna, J. Cultivar variation in apple peel and whole fruit phenolic composition. Sci. Hort. 2009, 121, 176–181, doi:10.1016/j.scienta.2009.01.038.
[25]
Duda-Chodak, A.; Tarko, T.; Tuszyński, T. Antioxidant activity of apples—An impact of maturity stage and fruit part. Sci. Pol. Technol. Aliment. 2011, 10, 443–454.
[26]
Paluszczak, J.; Krajka-Kuzniak, V.; Baer-Dubowska, W. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol. Lett. 2010, 192, 119–125, doi:10.1016/j.toxlet.2009.10.010.
[27]
Otake, Y.; Nolan, A.L.; Walle, U.K.; Walle, T. Quercetin and resveratrol potently reduce estrogen sulfotransferase activity in normal human mammary epithelial cells. J. Steroid Biochem. Mol. Biol. 2000, 73, 265–270, doi:10.1016/S0960-0760(00)00073-X.
[28]
Marchetti, F.; de Santi, C.; Vietri, M.; Pietrabissa, A.; Spisni, R.; Mosca, F.; Pacifici, G.M. Differential inhibition of human liver and duodenum sulphotransferase activities by quercetin, a flavonoid present in vegetables, fruit and wine. Xenobiotica 2001, 31, 841–847, doi:10.1080/00498250110069159.
[29]
Coughtrie, M.W.; Sharp, S.; Maxwell, K.; Innes, N.P. Biology and function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases. Chem. Biol. Interact. 1998, 109, 3–27, doi:10.1016/S0009-2797(97)00117-8.
[30]
Gerhauser, C. Cancer chemopreventive potential of apples, apple juice, and apple components. Planta Med. 2008, 74, 1608–1624, doi:10.1055/s-0028-1088300.
[31]
Chan, A.; Shea, T. Dietary supplementation with apple juice decreases endogenous amyloid-beta levels in murine brain. J. Alzheimer’s Dis. 2009, 16, 167–171.
[32]
Johnston, K.; Clifford, M.; Morgan, L. Possible role for apple juice phenolic compounds in the acute modification of glucose tolerance and gastrointestinal hormone secretion in humans. J. Sci. Food Agric. 2002, 82, 1800–1805, doi:10.1002/jsfa.1264.
[33]
Marks, S.C.; Mullen, W.; Borges, G.; Crozier, A. Absorption, metabolism, and excretion of cider dihyrochalcones in healthy humans and subjects with an ileostomy. J. Agric. Food Chem. 2009, 57, 2009–2015, doi:10.1021/jf802757x.
[34]
Graziani, G.; D’Argenio, G.; Tuccillo, C.; Loguercio, C.; Ritieni, A.; Morisco, F.; del Vecchio, B.; Fogliano, V.; Romano, M. Apple phenol extracts prevent damage to human gastric epithelial cells in vitro and to rat gastric mucosa in vivo. Gut 2005, 54, 193–200, doi:10.1136/gut.2004.046292.
[35]
Boyer, J.; Liu, R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004, 12, 3–5.
[36]
Hyson, D.A. A comprehensive review of apples and apple components and their relationship to human health. Am. Soc. Nutr. Adv. Nutr. 2011, 2, 408–420, doi:10.3945/an.111.000513.
[37]
Viggiano, A.; Monda, M.; Turco, I.; Incarnato, L.; Vinno, V.; Viggiano, E.; Baccari, M.; de Luca, B. Annurca apple-rich diet restores long-term potentiation and induces behavioural modifications in aged rats. Exp. Neurol. 2006, 199, 354–361, doi:10.1016/j.expneurol.2006.01.001.
[38]
Gallus, S.; Talamini, R.; Giacosa, A.; Montella, M.; Ramazzotti, V.; Franceschi, S.; Negri, E.; La Vecchia, C. Does an apple a daykeep the oncologist away? Ann. Oncol. 2005, 16, 1841–1844, doi:10.1093/annonc/mdi361.
[39]
Jedrychowski, W.; Maugeri, U.; Popiela, T.; Kulig, J.; Sochacka-Tatara, E.; Pac, A.; Sowa, A.; Musial, A. Case-control study on beneficial effect of regular consumption of apples on colorectal cancer risk in a population with relatively low intake of fruits and vegetables. Eur. J. Cancer Prev. 2010, 19, 42–47, doi:10.1097/CEJ.0b013e328333d0cc.
[40]
Serra, A.T.; Rocha, J.; Sepodes, B.; Matias, A.A.; Feliciano, R.P.; de Carvalho, A.; Bronze, M.R.; Duarte, C.M.; Figueira, M.E. Evaluation of cardiovascular protective effect of different apple varieties—Correlation of response with composition. Food Chem. 2012, 135, 2378–2386, doi:10.1016/j.foodchem.2012.07.067.
[41]
Tsao, R.; Yang, R.; Xie, S.; Sockovie, E.; Khanizadeh, S. Which polyphenolic compounds contribute to the total antioxidant activities of apple? J. Agric. Food Chem. 2005, 53, 4989–4995, doi:10.1021/jf048289h.
[42]
Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P.; Tuszyński, T. The profile of polyphenols and antioxidant properties of selected apple cultivars grown in Poland. J. Fruit Ornam. Plant Res. 2010, 18, 39–50.
[43]
Carbone, K.; Giannini, B.; Picchi, V.; Scalzo, R.L.; Cecchini, F. Phenolic composition and free radical scavenging activity of different apple varieties in relation on the cultivar, tissue type and storage. Food Chem. 2011, 127, 493–500, doi:10.1016/j.foodchem.2011.01.030.
[44]
Begi?-Akagi?, A.; Spaho, N.; Oru?evi?, S.; Drkenda, P.; Kurtovi?, M.; Ga?i, F.; Kopjar, M.; Pili?ota, V. Influence of cultivar, storage time, and processing on the phenol content of cloudy apple juice. Croat. J. Food Sci. Technol. 2011, 3, 1–8.
[45]
Matthes, A.; Schmitz-Eiberger, M. Polyphenol content and antioxidant capacity of apple fruit: Effect of cultivar and storage conditions. J. Appl. Bot. Food Qual. 2009, 82, 152–157.
[46]
Napolitano, A.; Cascone, A.; Graziani, G.; Ferracane, R.; Scalfi, L.; di Vaio, C.; Ritieni, A.; Fogliano, V. Influence of variety and storage on the polyphenol composition of apple flesh. J. Agric. Food Chem. 2004, 52, 6526–6531, doi:10.1021/jf049822w.
[47]
Cheynier, V. Polyphenols in foods are more complex than often thought. Am. J. Clin. Nutr. 2005, 81, 223–229.
[48]
Van der Sluis, A.A.; Dekker, M.; van Boekel, M.A.J.S. Activity and concentration of polyphenolic antioxidants in apple juice. Stability during storage. J. Agric. Food Chem. 2005, 53, 1073–1080, doi:10.1021/jf040270r.
[49]
Markowski, J.; P?ocharski, W. Determination of phenolic compounds in apples and processed apple products. J. Fruit Ornam. Plant Res. 2006, 14, 133–142.
[50]
Lu, Y.; Foo, L.Y. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 2000, 68, 81–85, doi:10.1016/S0308-8146(99)00167-3.
[51]
Spanos, G.A.; Wrolstad, R.E.; Heatherbell, D.A. Influence of processing and storage on the phenolic composition of apple juice. J. Agric. Food Chem. 1990, 38, 1572–1579, doi:10.1021/jf00097a031.
[52]
Miller, N.J.; Diplock, A.T.; Rice-Evans, C.A. Evaluation of the total antioxidant activity as a marker of the deterioration of apple juice on storage. J. Agric. Food Chem. 1995, 43, 1794–1801, doi:10.1021/jf00055a009.
[53]
Volz, R.K.; McGhie, T.K. Genetic variability in apple fruit polyphenol composition in Malus x domestica and Malus sieversii germplasm grown in New Zealand. J. Agric. Food Chem. 2011, 59, 11509–11521, doi:10.1021/jf202680h.
[54]
Velasco, R.; Zharkikh, A.; Affourtit, J.; Dhingra, A.; Cestaro, A.; Kalyanaraman, A.; Fontana, P.; Bhatnagar, S.K.; Troggio, M.; Pruss, D.; et al. The genome of the domesticated apple (Malus x domestica Borkh.). Nat. Genet. 2010, 42, 833–839, doi:10.1038/ng.654.
[55]
Troggio, M.; Gleave, A.; Salvi, S.; Chagné, D.; Cestaro, A.; Kumar, S.; Crowhurst, R.N.; Gardiner, S.E. Apple, from genome to breeding. Tree Genet. Gen. 2012, 8, 509–529, doi:10.1007/s11295-012-0492-9.
[56]
Volz, R.; Oraguzie, N.; Whitworth, C.; How, N.; Chagné, D.; Carlisle, C.; Gardiner, S. Red flesh breeding in apple-progress and challenges. Acta Hort. 2009, 814, 337–342.
[57]
Espley, R.V.; Brendolise, C.; Chagne, D.; Kutty-Amma, S.; Green, S.; Volz, R.; Putterill, J.; Schouten, H.J.; Gardiner, S.E.; Hellens, R.P.; et al. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 2009, 21, 168–183, doi:10.1105/tpc.108.059329.
[58]
Espley, R.V.; Bovy, A.; Bava, C.; Jaeger, S.R.; Tomes, S.; Norling, C.; Crawford, J.; Rowan, D.; McGhie, T.K.; Brendolise, C.; et al. Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnol. J. 2013, 11, 408–419, doi:10.1111/pbi.12017.