全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antioxidants  2013 

Evaluation of Antioxidant Status of Two Limoniastrum Species Growing Wild in Tunisian Salty Lands

DOI: 10.3390/antiox2030122

Keywords: Limoniastrum guyonianum, Limoniastrum monopetalum, antioxidant, metabolites, DPPH, ferrous ions chelating activity, reducing power, TBARS

Full-Text   Cite this paper   Add to My Lib

Abstract:

We aim to highlight the differential antioxidant status of Limoniastrum guyonianum and Limoniastrum monopetalum in relation to their respective chemical and location characteristics. Metabolite analysis revealed similar contents in phenolic, flavono?ds, sugars and chlorophyll in the two species’ leaves. Higher amounts of proline (Pro), caroteno?ds (Carot), sodium (Na) and potassium (K) were measured in L. monopetalum leaves relative to L. guyonianum ones. While the two Limoniastrum species have similar free radical DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity, L. guyonianum showed more than two-fold higher ferrous ions chelating activity relative to L. monopetalum. However, highest reducing power activity was observed in L. monopetalum. Thiobarbituric acid-reactive substances (TBARS) determination indicated that L. monopetalum behave better lipid membrane integrity relative to L. guyonianum. These findings suggested that the lesser stressful state of L. monopetalum was related to higher metabolites accumulation and reducing capacity compared to L. guyonianum.

References

[1]  Kavitha, K.; George, S.; Venkataraman, G.; Parida, A. A salt inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 2010, 92, 1321–1329, doi:10.1016/j.biochi.2010.06.009.
[2]  Ghnaya, T.; Nouairi, I.; Slama, I.; Messedi, D.; Grignon, C.; Abdelly, C.; Ghorbel, M.H. Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. J. Plant Physiol. 2005, 162, 1133–1140, doi:10.1016/j.jplph.2004.11.011.
[3]  Lopez-Chuken, U.J.; Young, S.D. Plant screening of halophyte species for cadmium phytoremediation. Z. Naturforsch. C 2005, 60, 236–243.
[4]  Ksouri, R.; Megdiche, W.; Falleh, H.; Trabelsi, N.; Boulaaba, M.; Smaoui, A.; Abdelly, C. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C. R. Biol. 2008, 331, 865–873, doi:10.1016/j.crvi.2008.07.024.
[5]  Chaieb, M.; Boukhris, M. Flore Suscinte et Illustrée des Zones Arides et Sahariennes de Tunisie; Association de la Protection de la Nature et de l’Environnement: Sfax, Tunisia, 1998; pp. 204–205.
[6]  Laudadio, V.; Dario, M.; Hammadi, M.; Tufarelli, V. Nutritional composition of three fodder species browsed by camels (Camelus dromedarius) on arid area of Tunisia. Trop. Anim. Health Prod. 2008, 41, 1219–1224.
[7]  Nieukerken, J.V.E. Acalyptris Meyrick: Revision of the platani and staticis groups in Europe and the Mediterranean (Lepidoptera: Nepticulidae). Zootaxa 2007, 1436, 1–48.
[8]  Heimler, D.; Vignolini, P.; Dini, M.; Vincieri, F.; Romani, A. Antiradical activity and polyphenol composition of local Brassicaceae edible varieties. Food Chem. 2006, 99, 464–469, doi:10.1016/j.foodchem.2005.07.057.
[9]  Dewanto, V.X.; Wu, K.; Adom, K.; Liu, D.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014, doi:10.1021/jf0115589.
[10]  Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 1995, 28, 25–30.
[11]  Zhao, F.; Yang, J.; Schoneich, C. Effects of polyaminocarboxylate metal chelators on iron-thiolate induced oxidation of methionine- and histidine-containing peptides. Pharm. Res. 1996, 13, 931–938, doi:10.1023/A:1016021716274.
[12]  Yildirim, A.; Mavi, A.; Kara, A. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem. 2001, 49, 4083–4089, doi:10.1021/jf0103572.
[13]  Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stochiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198, doi:10.1016/0003-9861(68)90654-1.
[14]  Dhindsa, R.A.; Plumb-Dhindsa, P.; Thorpe, P.A. Leaf senescence: Correlated with increased permeability and lipid peroxidation, and decreases levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 126, 93–101.
[15]  Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207, doi:10.1007/BF00018060.
[16]  Arnon, D.I. Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15, doi:10.1104/pp.24.1.1.
[17]  MacKinney, G. Absorption of light by chlorophyll solutions. J. Biol. Chem. 1941, 144, 315–323.
[18]  Hajlaoui, H.; El Ayeb, N.; Garrec, J.P.; Denden, M. Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.). Ind. Crops Prod. 2010, 31, 122–130, doi:10.1016/j.indcrop.2009.09.007.
[19]  Araujo, S.A.M.; Silveira, J.A.G.; Almeida, T.A.; Rocha, I.M.A.; Morais, D.L.; Viegas, R.A. Salinity tolerance of halophyte Atriplex nummularia L. grown under increasing NaCl levels. Rev. Bras. Eng. Agric. Ambient. 2006, 10, 848–854, doi:10.1590/S1415-43662006000400010.
[20]  Parejo, I.; Viladomat, F.; Bastida, J.; Rosas-Romero, A.; Flerlage, N.; Burillo, J.; Codina, C. Comparison between the radical scavenging activities and antioxidant activity of six distilled and nondistilled maditerranean herbs and aromatic plants. J. Agric. Food Chem. 2002, 50, 6882–6890, doi:10.1021/jf020540a.
[21]  Galvez, M.; Martin-Cordero, C.; Houghton, P.J.; Ayuso, M.J. Antioxidant activity of methanol extracts obtained from Plantago species. J. Agric. Food Chem. 2005, 53, 1927–1933, doi:10.1021/jf048076s.
[22]  Melo, E.A.; Filho, J.M.; Guerra, N.B. Characterization of antioxidant compounds in aqueous coriander extract (Coriander sativum L.). Food Sci. Technol. 2005, 38, 15–19.
[23]  Sroka, Z.; Cisowski, W. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 2003, 41, 753–758, doi:10.1016/S0278-6915(02)00329-0.
[24]  Hou, W.C.; Lin, R.D.; Cheng, K.T.; Hung, Y.T.; Cho, C.H.; Chen, C.H.; Hwang, S.Y.; Lee, M.H. Free radical scavenging activity of Taiwanese native plants. Phytomedicine 2003, 10, 170–175, doi:10.1078/094471103321659898.
[25]  Gagneul, D.; A?nouche, A.; Duhazé, C.; Lugan, R.; Larher, F.R.; Bouchereau, A. A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol. 2007, 144, 1598–1611, doi:10.1104/pp.107.099820.
[26]  Korus, J.; Gumul, D.; Gibinski, M. In?uence of extrusion on polyphenol content and antioxidant activity of common bean (Phaseolus vulgaris L.) seeds. Zywnosc 2006, 13, 102–111.
[27]  Matysik, J.; Alia, B.B.; Mohanty, P. Molecular mechanism of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci. 2002, 82, 525–532.
[28]  Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 1989, 28, 1057–1060, doi:10.1016/0031-9422(89)80182-7.
[29]  Li, K.; Pang, C.H.; Ding, F.; Sui, N.; Feng, Z.T.; Wang, B.S. Overexpression of Suaeda salsa stroma ascorbate peroxidase in Arabidopsis chloroplasts enhances salt tolerance of plants. S. Afr. J. Bot. 2012, 78, 235–245, doi:10.1016/j.sajb.2011.09.006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133