全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antioxidants  2013 

Determination of Radical Scavenging Activity and Total Phenols of Wine and Spices: A Randomized Study

DOI: 10.3390/antiox2030110

Keywords: antioxidant, spice extracts, wine, DPPH, total phenols

Full-Text   Cite this paper   Add to My Lib

Abstract:

Thirty eight bottles of red wine (Carbanet Sauvignon) were randomly selected based on vintage, region, price, and age (number of months in a barrel). The total phenolic content of each wine was determined using Folin-Ciocalteau assay. The radical scavenging activity was evaluated using 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Apart from a few bottles that exhibited above average radical scavenging activity and phenolic content, there was no good correlation of those two quantities with region, price or vintage. The average phenolic amount was 2874 mg/L. The lowest phenolic content was found to be 1648 mg/L for an eight dollar wine. Wine with the highest amount of phenol of 4495 mg/L was a 2007, nine dollar bottle from South America. High amount of phenols did not translate into high radical scavenging activity. Barrel-aging did not increase the amount of phenols or the radical scavenging activity of wine. In order to discover new and potent sources of antioxidants from plants, the following spices were studied: ginger, cilantro, cumin, anise, linden, eucalyptus, marjoram, oregano, sage, thyme and rosemary. Whole spices were crushed and extracted for 96 h at room temperature using a combination of ethyl acetate, ethyl alcohol and water in the ratio of 4.5:4.5:1 (v/v/v). The radical scavenging activity of extracts was evaluated using 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. The total phenolic content of each spice was also determined using the Folin-Ciocalteau assay. Eucalyptus was found to be the most potent antioxidant with an LC 50 of 324.1 mg of phenol/L, followed by marjoram with an LC 50 of 407.5 mg of phenol/L, and rosemary with an LC 50 of 414.0 mg/L. The least potent antioxidants were ginger and cilantro with LC 50 of 7604 mg/L of phenol and 7876 mg of phenol/L, respectively.

References

[1]  Bellomo, G. Cell demage by oxygen free radicals. Cytotechnology 1991, 5, 71–73.
[2]  Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Clarendon Press: Oxford, UK, 1986.
[3]  Seifried, H.E.; Anderson, D.E.; Fisher, E.I.; Milner, J.A. A review of the interaction among dietary antioxidants and reactive oxygen species. Am. J. Med. 1991, 91 (Suppl. 3c), S14–S22.
[4]  Salvi, A.; Carrupt, P.A.; Tillement, J.P.; Testa, B. Structural damage to proteins caused by free radicals: Assessment, protection by antioxidants, and influence of protein binding. Biochem. Pharmacol. 2001, 61, 1237–1242.
[5]  Floyd, R.A.; Carney, J.M. Free radical damage to protein and DNA: Mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol. 1992, 32, S22–S27, doi:10.1002/ana.410320706.
[6]  Rice-Evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant derived phenolic flavonoids. Free Radic. Res. 1995, 22, 375–383, doi:10.3109/10715769509145649.
[7]  Duthie, G.; Crozier, A. Plant-derived phenolic antioxidants. Curr. Opin. Lipidol. 2000, 11, 43–47, doi:10.1097/00041433-200002000-00007.
[8]  Stoclet, J.C.; Chataigneau, T.; Ndiaye, M.; Oak, M.H.; El Bedoui, J.; Chataigneau, M.; Schini-Kerth, V.B. Vascular protection by dietary polyphenols. Eur. J. Pharm. 2004, 500, 299–313, doi:10.1016/j.ejphar.2004.07.034.
[9]  Vinson, J.A.; Dabbagh, Y.A.; Serry, M.M.; Jang, J. Plant flavonoids, especially tea flavonols, are powerful antioxidants using an in vitro oxidation model for heart disease. J. Agric.Food Chem. 1995, 43, 2800–2802, doi:10.1021/jf00059a005.
[10]  Tunstall-Pedoe, H.; Kuulasmaa, K.; Mahonen, N.; Tolonen, H.; Ruokokoski, E.; Amouyel, P. Contribution of trends in survival and coronary-event rates to changes in coranary heart disease mortality: 10-Year results from 37 WHO MONICA project populations. Monitoring trends and determinants in cardiovascular disease. Lancet 1999, 353, 1547–1557.
[11]  Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1999, 339, 1523–1523, doi:10.1016/0140-6736(92)91277-F.
[12]  Rimm, E.B.; Klatsky, A.; Grobbe, D.; Stampfer, M.J. Review of moderate alcohol consumption and reduced risk of coronary heart disease: Is the effect due to beer, wine, or spirits. Br. Med. J. 1996, 312, 731–736, doi:10.1136/bmj.312.7033.731.
[13]  Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Wine as biological fluid: History, production, and role in disease prevention. J. Clin. Lab. Anal. 1997, 11, 287–313, doi:10.1002/(SICI)1098-2825(1997)11:5<287::AID-JCLA6>3.0.CO;2-4.
[14]  Frankel, E.N.; Waterhouse, A.L.; Kinsella, J.E. Inhibition of human LDL oxidation by resveratrol. Lancet 1993, 341, 1103–1104.
[15]  Frankel, E.N.; Waterhouse, A.L.; Teissedre, P.-L. Principal phenolic phytochemicals in selected Californian wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J. Agric. Food Chem. 1995, 43, 890–894, doi:10.1021/jf00052a008.
[16]  Teissedre, P.-L.; Frankel, E.N.; Waterhouse, A.L.; Peleg, H.; German, J.B. Inhibition of in vitro human LDL oxidation by phenolic antioxidants from grapes and wine. J. Sci. Food Agric. 1996, 70, 55–61, doi:10.1002/(SICI)1097-0010(199601)70:1<55::AID-JSFA471>3.0.CO;2-X.
[17]  Chipault, J.R.; Mizuto, G.R.; Hawkins, J.M.; Lundberg, W.O. The antioxidant properties of natural spices. J. Food Sci. 1952, 17, 46–55, doi:10.1111/j.1365-2621.1952.tb16737.x.
[18]  Chipault, J.R.; Mizuto, G.R.; Hawkins, J.M.; Lundberg, W.O. Antioxidant and antimicrobial constituents of herbs and spices. Food Res. 1955, 20, 443–449, doi:10.1111/j.1365-2621.1955.tb16854.x.
[19]  Chipault, J.R.; Mizuto, G.R.; Hawkins, J.M.; Lundberg, W.O. The antioxidant properties of spices in foods. Food Technol. 1956, 10, 209–211.
[20]  Cort, W.M. Hemoglobin peroxidation test screen antioxidants. Food Technol. 1974, 28, 60–66.
[21]  Lewis, E.J.; Watts, B.M. Lipid oxidation in heat-sterilized beef. Food Res. 1959, 23, 274–276.
[22]  Bishov, S.J.; Masuoka, Y.; Kapsalis, J.G. Antioxidant effect of spices, herbs and protein hydolyzates in freeze-dried model systems: Synergistic action with synthetic phenolic antioxidants. J. Food Process. Preserv. 1977, 1, 153–166, doi:10.1111/j.1745-4549.1977.tb00320.x.
[23]  Economou, K.D.; Oreopoulou, V.; Thomopoulos, C.D. Antioxidant properties of some plant extracts of the Labiatae family. J. Am. Oil Chem. Soc. 1991, 68, 109–113, doi:10.1007/BF02662329.
[24]  Wu, J.W.; Lee, M.-H.; Ho, C.-T.; Chang, S.S. Elucidation of the chemical structures of natural antioxidants isolated from rosemary. J. Am. Oil Chem. Soc. 1982, 59, 339–345, doi:10.1007/BF02541016.
[25]  Tena, M.T.; Valcárcel, M.; Hidalgo, P.J.; Ubera, J.L. Supercritical fluid extraction of natural antioxidants from rosemary: Comparison with liquid solvent sonication. Anal. Chem. 1997, 69, 521–526, doi:10.1021/ac960506t.
[26]  Chang, S.S.; Ostric-Matijasevic, B.; Hsieh, O.A.L.; Huang, C.-L. Natural antioxidants from rosemary and sage. J. Food Sci. 1977, 42, 1102–1106, doi:10.1111/j.1365-2621.1977.tb12676.x.
[27]  Ibanez, E.; Kubatova, A.; Senorans, F.J.; Cavero, S.; Reglero, G.; Hawthorne, S.B. Subcritical water extraction of antioxidant compounds from rosemary plants. J. Agric. Food Chem. 2003, 51, 375–382, doi:10.1021/jf025878j.
[28]  Chun, S.-S.; Vattem, D.A.; Lin, Y.-T.; Shetty, K. Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochem. 2005, 40, 809–816, doi:10.1016/j.procbio.2004.02.018.
[29]  Wang, M.; Li, J.; Rangarajan, M.; Shao, Y.; LaVoie, E.J.; Huang, T.-C.; Ho, C.-T. Antioxidative phenolic compounds from sage (Salvia officinalis). J. Agric. Food Chem. 1998, 46, 4869–4873, doi:10.1021/jf980614b.
[30]  Kikuzaki, H.; Nakatani, N. Antioxidant effects of some ginger constituents. J. Food Sci. 1993, 58, 1407–1410, doi:10.1111/j.1365-2621.1993.tb06194.x.
[31]  Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627–650.
[32]  Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 26, 1199–1200, doi:10.1038/1811199a0.
[33]  Lugemwa, F.N. Extraction of betulin, eugenol and carnosic acid using water-organic solvent mixtures. Molecules 2012, 17, 9274–9282, doi:10.3390/molecules17089274.
[34]  Ikawa, M.; Schaper, T.D.; Dollard, C.A.; Sasner, J.J. Utilization of Folin–Ciocalteu phenol reagent for the detection of certain nitrogen compounds. J. Agric. Food Chem. 2003, 51, 1811–1815, doi:10.1021/jf021099r.
[35]  Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the Folin?Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144.
[36]  Sato, M.; Ramarathnam, N.; Suzuki, Y.; Ohkubo, T.; Takeuchi, M.; Ochi, H. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J. Agric. Food Chem. 1996, 44, 37–41, doi:10.1021/jf950190a.
[37]  Simonetti, P.; Pietta, P.; Testolin, G. Polyphenol content and total antioxidant potential of selected Italian wines. J. Agric. Food Chem. 1997, 45, 1152–1155, doi:10.1021/jf960705d.
[38]  Zafrilla, P.; Morillas, J.; Mulero, J.; Cayuela, J.M.; Martinez-Cacha, A.; Pardo, F.; Lopez-Nicola, J.M. Changes during storage in conventional and ecological wine: Phenolic content and antioxidant activity. J. Agric. Food Chem. 2003, 51, 4694–4700, doi:10.1021/jf021251p.
[39]  Hitoshi, A.; Hideaki, T.; Hirofumi, K.; Yoshinobu, K. Aging of whiskey increases 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. J. Agric. Food Chem. 2004, 52, 5240–5244, doi:10.1021/jf049817s.
[40]  Carole, V.; Augustin, S.; Catherine, L.; Michel, M. Ellagitannins and Lignins in aging of spirits in oak barrels. J. Agric. Food Chem. 1993, 41, 1872–1879, doi:10.1021/jf00035a013.
[41]  Atsumi, T.; Tonosaki, K. Smelling lavender and rosemary increases free radical scavenging activity and decreases cortisol level in saliva. Psychiatry Res. 2007, 150, 89–96, doi:10.1016/j.psychres.2005.12.012.
[42]  Bakirel, T.; Bakirel, U.; Keles, O.U.; Ulgen, S.G.; Yardibi, H. In vivo assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J. Ethnopharmacol. 2008, 116, 64–73, doi:10.1016/j.jep.2007.10.039.
[43]  Karpiska-Tymoszczyk, M. Effect of addition of ground rosemary on the quality and shelf life of turkey meatballs during refrigerated storage. Br. Poult. Sci. 2008, 49, 742–750, doi:10.1080/00071660802454665.
[44]  Perez-Fons, L.; Garzon, M.T.; Micol, V. Relationship between the antioxidant capacity and effect of rosemary polyphenols on membrane phospholipid order. J. Agric. Food Chem. 2010, 58, 161–171, doi:10.1021/jf9026487.
[45]  Ho, C.T.; Wang, M.; Wei, G.J.; Huang, T.C.; Huang, M.T. Chemistry and antioxidative factors in rosemary and sage. Biofactors 2000, 13, 161–166, doi:10.1002/biof.5520130126.
[46]  Cheung, S.; Tai, J. Anti-proliferative and antioxidant properties of rosemary (Rosmarinus officinalis). Oncol. Rep. 2007, 17, 1525–1531.
[47]  Exarchou, V.; Nenadis, N.; Tsimidou, M.; Gerothanassis, I.P.; Troganis, A.; Boshkou, D. Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage and summer savory. J. Agric. Food Chem. 2002, 50, 5294–5299, doi:10.1021/jf020408a.
[48]  Cuvelier, M.-E.; Berset, C.; Richard, H. Antioxidant constituents in sage (Salvia officinalis). J. Agric. Food Chem. 1994, 42, 665–669, doi:10.1021/jf00039a012.
[49]  Lorena, P.; Renzo, B.; Stefania, V.; Eva, ü.; Lanfranco, S.C. Antioxidant activity of sage (Salvia officinalis and S fruticosa) and oregano (Origanum onites and O indercedens) extracts related to their phenolic compound content. J. Sci. Food Agric. 2002, 82, 1645–1651, doi:10.1002/jsfa.1240.
[50]  Frankel, E.N.; Huang, S.-W.; Aeschbach, R.; Prior, E. Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in-water emulsion. J. Sci. Food Agric. 1996, 44, 131–135, doi:10.1021/jf950374p.
[51]  Nakatani, N. Natural Antioxidants from Spices. In Phenolic Compounds in Food and Their Effects on Health II; Huang, M.-T., Ho, C.T., Lee, C.Y., Eds.; American Chemical Society: Washington, DC, USA, 1992; pp. 72–86.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133