全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antioxidants  2013 

Antioxidant Potential of Bark Extracts from Boreal Forest Conifers

DOI: 10.3390/antiox2030077

Keywords: phenolic content, ORAC, antioxidant cell-based assay, Pinus banksiana, Pinus resinosa, Pinus strobus, Picea glauca, Picea mariana, Larix laricina, Abies balsamea

Full-Text   Cite this paper   Add to My Lib

Abstract:

The bark of boreal forest conifers has been traditionally used by Native Americans to treat various ailments and diseases. Some of these diseases involve reactive oxygen species (ROS) that can be prevented by the consumption of antioxidants such as phenolic compounds that can be found in medicinal plants. In this study, ultrasonic assisted extraction has been performed under various solvent conditions (water:ethanol mixtures) on the bark of seven boreal forest conifers used by Native Americans including: Pinus strobus, Pinus resinosa, Pinus banksiana, Picea mariana, Picea glauca, Larix laricina, and Abies balsamea. The total phenolic content, as well as ORAC FL potency and cellular antioxidant activity (IC 50), were evaluated for all bark extracts, and compared with the standardized water extract of Pinus maritima bark (Pycnogenol), which showed clinical efficiency to prevent ROS deleterious effects. The best overall phenolic extraction yield and antioxidant potential was obtained with Picea glauca and Picea mariana. Interestingly, total phenolic content of these bark extracts was similar to Pycnogenol but their antioxidant activity were higher. Moreover, most of the extracts did not inhibit the growth of human skin fibroblasts, WS1. A significant correlation was found between the total phenolic content and the antioxidant activity for water extracts suggesting that these compounds are involved in the activity.

References

[1]  Moerman, D.E. Native American Ethnobotany, 3rd ed.; Timber Press Inc.: Portland, OR, USA, 2000.
[2]  Chandler, R.F.; Freeman, L.; Hooper, S.N. Herbal remedies of the maritime indians. J. Ethnopharmacol. 1979, 1, 49–68, doi:10.1016/0378-8741(79)90016-3.
[3]  Gottesfeld, L.M.J. The importance of bark products in the aboriginal economies of Northwestern British Columbia. Can. Econ. Bot. 1992, 46, 148–157, doi:10.1007/BF02930629.
[4]  Mechling, W.H. The malecite indians with notes on the micmacs. Anthropologica 1959, 8, 239–263.
[5]  Palmer, G. Shuswap Indian ethnobotany. Syesis 1975, 8, 29–51.
[6]  Reagan, A.B. Plants used by the bois fort chippewa (Ojibwa) Indians of Minnesota. Wis. Archeol. 1928, 7, 230–248.
[7]  Carr, L.G.; Westey, C. Surviving folktales & herbal lore among the shinnecock Indians. J. Am. Folk. 1945, 58, 113–123, doi:10.2307/535500.
[8]  Chapple, I.L. Reactive oxygen species and antioxidants in inflammatory diseases. J. Clin. Periodontol. 1997, 24, 287–296, doi:10.1111/j.1600-051X.1997.tb00760.x.
[9]  Nagata, M. Inflammatory cells and oxygen radicals. Curr. Drug Targets Inflamm. Allergy 2005, 4, 503–504, doi:10.2174/1568010054526322.
[10]  Hitchon, C.A.; El-Gabalawy, H.S. Oxidation in rheumatoid arthritis. Arthritis Res. Ther. 2004, 6, 265–278, doi:10.1186/ar1447.
[11]  MacNee, W. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2005, 2, 50–60.
[12]  Repine, J.E.; Bast, A.; Lankhorst, I. Oxidative stress in chronic obstructive pulmonary disease: The Oxidative Stress Study Group. Am. J. Respir. Crit. Care Med. 1997, 156, 341–357, doi:10.1164/ajrccm.156.2.9611013.
[13]  Arts, I.C.W.; Hollman, P.C.H. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005, 81, 317S–325S.
[14]  Rahman, I.; Kilty, I. Antioxidant therapeutic targets in COPD. Curr. Drug Targets 2006, 7, 707–720, doi:10.2174/138945006777435254.
[15]  Santus, P.; Sola, A.; Carlucci, P.; Fumagalli, F.; di Gennaro, A.; Mondoni, M.; Carnini, C.; Centanni, S.; Sala, A. Lipid peroxidation and 5-lipoxygenase activity in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2005, 171, 838–843, doi:10.1164/rccm.200404-558OC.
[16]  Tabak, C.; Arts, I.C.W.; Smit, H.A.; Heederik, D.; Kromhout, D. Chronic obstructive pulmonary disease and intake of catechins, flavonols, and flavones. Am. J. Respir. Crit. Care Med. 2001, 164, 61–64, doi:10.1164/ajrccm.164.1.2010025.
[17]  Packer, L.; Rimbach, G.; Virgili, F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radic. Biol. Med. 1999, 27, 704–724, doi:10.1016/S0891-5849(99)00090-8.
[18]  Devaraj, S.; Vega-López, S.; Kaul, N.; Sch?nlau, F.; Rohdewald, P.; Jialal, I. Supplementation with a pine bark extract rich in polyphenols increases plasma antioxidant capacity and alters the plasma lipoprotein profile. Lipids 2002, 37, 931–934, doi:10.1007/s11745-006-0982-3.
[19]  Lau, B.H.; Riesen, S.K.; Truong, K.P.; Lau, E.W.; Rohdewald, P.; Barreta, R.A. Pycnogenol as an adjunct in the management of childhood asthma. J. Asthma 2004, 41, 825–832, doi:10.1081/JAS-200038433.
[20]  Diouf, P.N.; Stevanovic, T.; Cloutier, A. Study on chemical composition, antioxidant and anti-in?ammatory activities of hot water extract from Picea mariana bark and its proanthocyanidin-rich fractions. Food Chem. 2009, 113, 897–902, doi:10.1016/j.foodchem.2008.08.016.
[21]  García-Pérez, M.-E.; Royer, M.; Duque-Fernandez, A.; Diouf, P.N.; Stevanovic, T.; Pouliot, R. Antioxidant, toxicological and antiproliferative properties of Canadian polyphenolic extracts on normal and psoriatic keratinocytes. J. Ethnopharmacol. 2010, 132, 251–258, doi:10.1016/j.jep.2010.08.030.
[22]  Royer, M.; Prado, M.; Garcia-Pérez, M.-E.; Diouf, P.N.; Stevanovic, T. Study of nutraceutical, nutricosmetics and cosmeceutical potentials of polyphenolic bark extracts from Canadian forest species. PharmaNutrition 2013. in press.
[23]  Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158.
[24]  Ou, B.; Hampsch-Woodhill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626, doi:10.1021/jf010586o.
[25]  Girard-Lalancette, K.; Pichette, A.; Legault, J. Sensitive cell-based assay using DCFH oxidation for the determination or pro- and antioxidant properties of compounds and mixtures: Analysis of fruit and vegetable juices. Food Chem. 2009, 115, 720–726, doi:10.1016/j.foodchem.2008.12.002.
[26]  O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426.
[27]  Ustun, O.; Senol, F.S.; Kurkcuaglu, M.; Orhan, I.E.; Kartal, M.; Can Baser, K.H. Investigation on chemical composition, anticholinesterase and antioxidant activities of extracts and essential oils of Turkish Pinus species and pycnogenol. Ind. Crop. Prod. 2012, 38, 115–123, doi:10.1016/j.indcrop.2012.01.016.
[28]  Dudonné, S.; Vitrac, X.; Coutière, P.; Woilles, M.; Mérillon, J.-M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774, doi:10.1021/jf803011r.
[29]  García-Pérez, M.-E.; Royer, M.; Herbette, G.; Desjardins, Y.; Pouliot, R.; Stevanovic, T. Picea mariana bark: A new source of trans-resveratrol and other bioactive polyphenols. Food Chem. 2012, 135, 1173–1182, doi:10.1016/j.foodchem.2012.05.050.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133