Antioxidant properties of refined and whole wheat flour and their resultant bread were investigated to document the effects of baking. Total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC) were employed to determine the content of ethanol extractable phenolic compounds. HPLC was used to detect the presence of phenolic acids prior to their confirmation using LC-MS/MS. Whole wheat flour showed significantly higher antioxidant activity than refined flour ( p < 0.05). There was a significant effect of the bread-making process with the TPC of whole wheat bread (1.50–1.65 mg/g) and white bread (0.79–1.03 mg/g) showing a respective reduction of 28% and 33% of the levels found in whole wheat and refined flour. Similarly, baking decreased DPPH radical scavenging capacity by 32% and 30%. ORAC values, however, indicated that baking increased the antioxidant activities of whole wheat and refined flour by 1.8 and 2.9 times, respectively. HPLC analysis showed an increase of 18% to 35% in ferulic acid after baking to obtain whole and refined wheat bread containing 330.1 and 25.3 μg/g (average), respectively. Whole wheat flour and bread were superior to refined flour and bread in in vitro antioxidant properties.
References
[1]
Okarter, N.; Liu, C.; Sorrells, M.E.; Liu, R.H. Phytochemical content and antioxidant activity of six diverse varieties of whole wheat. Food Chem. 2010, 199, 249–257, doi:10.1016/j.foodchem.2009.06.021.
[2]
Miller, H.E.; Rigelhof, F.; Marquart, L.; Prakash, A.; Kanter, M. Antioxidant content of whole grain breakfast cereals, fruits and vegetables. J. Am. Coll. Nutr. 2000, 19, 312S–319S, doi:10.1080/07315724.2000.10718966.
[3]
Liu, R.H. Whole grain phytochemical and health. J. Cereal Sci. 2007, 46, 207–219, doi:10.1016/j.jcs.2007.06.010.
[4]
Jung, M.Y.; Jeon, B.S.; Bock, J.Y. Free, esterified, and insoluble-bound phenolic acids in white and red Korean ginsengs (Panax ginseng C.A. Meyer). Food Chem. 2002, 79, 105–111, doi:10.1016/S0308-8146(02)00185-1.
[5]
Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187, doi:10.1021/jf0205099.
[6]
Serpen, A.; Gokmen, V.; Pellegrini, N.; Fogliano, V. Direct measurement of the total antioxidant capacity of cereal products. J. Cereal Sci. 2008, 48, 816–820, doi:10.1016/j.jcs.2008.06.002.
[7]
Waldron, K.; Parr, A.J.; Ng, A.; Ralph, J. Cell wall esterified phenolic dimers: Identification and quantification by reverse phase high performance liquid chromatography and diode array detection. Phytochem. Anal. 1996, 7, 305–312, doi:10.1002/(SICI)1099-1565(199611)7:6<305::AID-PCA320>3.0.CO;2-A.
[8]
Rubin, K.W. Whole grains. Food Serv. Dir. 2002, 15, 48.
[9]
Leenhardt, F.; Lyan, B.; Rock, E.; Boussard, A.; Potus, J.; Chanlliaud, E.; Remesy, C. Wheat lipoxygenase activity induces greater loss of carotenoids than vitamin E during breadmaking. J. Agric. Food Chem. 2006, 54, 1710–1715.
[10]
Han, H.M.; Koh, B.K. Antioxidant activity of hard wheat flour, dough and bread prepared using various processes with the addition of different phenolic acids. J. Sci. Food Agric. 2011, 91, 604–608, doi:10.1002/jsfa.4188.
[11]
Gelinas, P.; McKinnon, C.M. Effect of wheat variety, farming site, and bread-baking on total phenolics. Int. J. Food Sci. Technol. 2006, 41, 329–332, doi:10.1111/j.1365-2621.2005.01057.x.
[12]
AACC International. Optimized Straight-Dough Bread-Making Method; AACC International Method 10–10.03; AACC International: St. Paul, MN, USA.
[13]
Li, W.; Pickard, M.D.; Beta, T. Evaluation of antioxidant activity and electronic taste and aroma properties of antho-beers from purple wheat grain. J. Agric. Food Chem. 2007, 55, 8958–8966, doi:10.1021/jf071715p.
[14]
Beta, T.; Nam, S.; Dexter, J.E.; Sapirstein, H.D. Phenolic content and antioxidant activity of pearled wheat and roller-mill fractions. Cereal Chem. 2005, 82, 390–393, doi:10.1094/CC-82-0390.
[15]
Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444, doi:10.1021/jf0201529.
[16]
Chiremba, C.; Rooney, L.W.; Beta, T. Microwave-assisted extraction of bound phenolic acids in bran and flour fractions from sorghum and maize cultivars varying in hardness. J. Agric. Food Chem. 2012, 60, 4735–4742, doi:10.1021/jf300279t.
[17]
Hirawan, R.; Ser, W.Y.; Arntfield, S.D.; Beta, T. Antioxidant properties of commercial, regular- and whole-wheat spaghetti. Food Chem. 2010, 119, 258–264, doi:10.1016/j.foodchem.2009.06.022.
[18]
Hirawan, R.; Diehl-Jones, W.; Beta, T. Comparative evaluation of the antioxidant potential of infant cereal produced from purple what and red rice grains and LC-MS analysis of their anthocyanins. J. Agric. Food Chem. 2011, 59, 12330–12341, doi:10.1021/jf202662a.
[19]
Chandrika, M.L.; Shahidi, F. Importance of insoluble-bound phenolics to antioxidant properties of wheat. J. Agric. Food Chem. 2006, 54, 1256–1264, doi:10.1021/jf052556h.
[20]
Liu, Q.; Qiu, Y.; Beta, T. Comparison of antioxidant activities of different colored wheat grains and analysis of phenolic compounds. J. Agric. Food Chem. 2010, 58, 9235–9241, doi:10.1021/jf101700s.
[21]
Li, W.; Beta, T. Flour and Bread from Black-, Purple-, and Blue-Colored Wheats. In Flour and Breads and Their Fortification in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: London, UK, 2011; pp. 59–67.
[22]
Juhasz, M.; Kitahara, Y.; Takahashi, S.; Fujii, T. Thermal stability of vitamin C: Thermogravimetric analysis and use of total ion monitoring chromatograms. J. Pharm. Biomed. Anal. 2012, 59, 190–193, doi:10.1016/j.jpba.2011.10.011.
[23]
Lavelli, V.; Hidalgo, A.; Pompei, C.; Brandolini, A. Radical scavenging activity of einkorn (Triticum monococcum L. subsp. monococcum) wholemeal flour and its relationship to soluble phenolic and lipophilic antioxidant content. J. Cereal Sci. 2009, 49, 319–321, doi:10.1016/j.jcs.2008.12.004.
[24]
Mpofu, A.; Sapirstein, H.D.; Beta, T. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J. Agric. Food Chem. 2006, 54, 1265–1270, doi:10.1021/jf052683d.
[25]
Mpofu, A.; Beta, T.; Sapirstein, H.D. Effects of Genotype, Environment and Genotype × Environment Interaction on the Antioxidant Properties of Wheat. In Wheat Antioxidants; Yu, L., Ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2007; pp. 24–41.
[26]
Liyana-Pathirana, C.M.; Shahidi, F. Antioxidant and free radical scavenging activities of whole wheat and milling fractions. Food Chem. 2007, 101, 1151–1157.
[27]
Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 3122–3128, doi:10.1021/jf0116606.
[28]
Lin, L.; Liu, H.; Yu, Y.; Lin, S.; Mau, J. Quality and antioxidant property of buckwheat enhanced wheat bread. Food Chem. 2009, 112, 987–991, doi:10.1016/j.foodchem.2008.07.022.
[29]
Yilmaz, Y.; Toledo, R. Antioxidant activity of water-soluble Maillard reaction products. Food Chem. 2005, 93, 273–278, doi:10.1016/j.foodchem.2004.09.043.
[30]
Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, R.C. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 2001, 11, 340–346.
[31]
Michalska, A.; Amigop-Benavent, M.; Zielinski, H.; del Castillo, M.D. Effect of bread making on formation of Maillard reaction products contributing to the overall antioxidant activity of rye bread. J. Cereal Sci. 2008, 48, 123–132, doi:10.1016/j.jcs.2007.08.012.
[32]
Moore, J.; Yu, L. Methods for Antioxidant Capacity Estimation of Wheat and Wheat-Based Food Products. In Wheat Antioxidants; Yu, L., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 118–166.
[33]
Revanappa, S.B.; Salimath, P.V. Phenolic acid profiles and antioxidant activities of different wheat (Triticum aestivum L.) varieties. J. Food Biochem. 2011, 35, 759–775, doi:10.1111/j.1745-4514.2010.00415.x.
[34]
Gasztonyi, M.N.; Farkas, R.T.; Berki, M.; Petroczi, I.M.; Daood, H.G. Content of phenols in wheat as affected by varietal and agricultural factors. J. Food Comp. Anal. 2011, 24, 785–789, doi:10.1016/j.jfca.2011.04.011.
[35]
Hung, P.V.; Maeda, T.; Miyatake, K.; Morita, N. Total phenolic compounds and antioxidant capacity of wheat flours by polishing method. Food Res. Int. 2009, 42, 185–190, doi:10.1016/j.foodres.2008.10.005.
[36]
Bunzel, M.; Ralph, J.; Lu, F.; Steinhart, H. Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains. J. Agric. Food Chem. 2004, 52, 6496–6502, doi:10.1021/jf040204p.
[37]
Klepacka, J.; Fornal, L. Ferulic acid and its position among the phenolic compounds of wheat. Crit. Rev. Food Sci. Nutr. 2006, 46, 639–647, doi:10.1080/10408390500511821.
[38]
Sun, J.; Liang, F.; Bin, Y.; Lin, P.; Duan, C. Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules 2007, 12, 679–693, doi:10.3390/12030679.
[39]
Brandolini, A.; Hidalgo, A. Wheat germ: Not only a by-product. Int. J. Food Sci. Nutr. 2012, 63, 71–74, doi:10.3109/09637486.2011.633898.
[40]
Hung, P.V.; Hatcher, D.W.; Barker, W. Phenolic acid composition of sprouted wheats by ultra-performance liquid chromatography (UPLC) and their antioxidant activities. Food Chem. 2011, 126, 1896–1901, doi:10.1016/j.foodchem.2010.12.015.