Natural products with antioxidant properties have been extensively utilized in the pharmaceutical and food industry and have also been very popular as health-promoting herbal products. This review provides a summary of the literature published around the first decade of the 21st century regarding the oral bioavailability of carotenoids, polyphenols and sulfur compounds as the three major classes of plant-derived antioxidants. The reviewed original research includes more than 40 compounds belonging to the above mentioned classes of natural antioxidants. In addition, related reviews published during the same period have been cited. A brief introduction to general bioavailability-related definitions, procedures and considerations is also included.
References
[1]
Stoner, C.L.; Cleton, A.; Johnson, K.; Oh, D.-M.; Hallak, H.; Brodfuehrer, J.; Surendran, N.; Han, H.-K. Integrated oral bioavailability projection using in vitro screening data as a selection tool in drug discovery. Int. J. Pharm. 2004, 269, 241–249, doi:10.1016/j.ijpharm.2003.09.006.
[2]
Jambhekar, S.S. Physicochemical and Biopharmaceutical Properties of Drug Substnaces and Pharmacokinetics. In Foye’s Principles of Medicinal Chemistry, 7th ed.; Lemke, T.L., Williams, D.A., Eds.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2013; pp. 61–105.
[3]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26, doi:10.1016/S0169-409X(00)00129-0.
[4]
Lau, Y.Y.; Hen, Y.-H.; Liu, T.-T.; Li, C.; Cui, X.; White, R.E.; Cheng, K.-C. Evaluation of a novel in vitro Caco-2 hepatocyte hybrid system for predicting in vivo oral bioavailability. Drug Metab. Dispos. 2004, 32, 937–942.
[5]
Fernandez-Garcia, E.; Carvajal-Lerida, I.; Jaren-Galan, M.; Garrido-Fernandez, J.; Perez-Galvez, A.; Hornero-Mendez, D. Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Res. Int. 2012, 46, 438–450, doi:10.1016/j.foodres.2011.06.007.
Hsieh, Y.; Korfmacher, W.A. Increasing speed and throughput when using hplc-ms/ms systems for drug metabolism and pharmacokinetic screening. Curr. Drug Metab. 2006, 7, 479–489, doi:10.2174/138920006777697963.
[8]
Bartley, G.E.; Scolnik, P.A. Plant carotenoids: Pigments for photoprotection, visual attraction, and human health. Plant Cell 1995, 7, 1027–1038.
[9]
Yeum, K.-J.; Russell, R.M. Carotenoid bioavailability and bioconversion. Ann. Rev. Nutr. 2002, 22, 483–504, doi:10.1146/annurev.nutr.22.010402.102834.
[10]
Borel, P. Genetic variations involved in interindividual variability in carotenoid status. Mol. Nutr. Food Res. 2012, 56, 228–240, doi:10.1002/mnfr.201100322.
[11]
Biehler, E. Methods for assessing aspects of carotenoid bioavailability. Curr. Nutr. Food Sci. 2010, 6, 44–69, doi:10.2174/157340110790909545.
[12]
Bohn, T. Bioavailability of non-provitamin A carotenoids. Curr. Nutr. Food Sci. 2008, 4, 240–258, doi:10.2174/157340108786263685.
[13]
Faulks, R.M.; Southon, S. Challenges to understanding and measuring carotenoid bioavailability. Biochim. Biophys. Acta Mol. Basis Dis. 2005, 1740, 95–100, doi:10.1016/j.bbadis.2004.11.012.
[14]
Johnson, E.J. Human Studies on Bioavailability and Serum Response of Carotenoids. In Handbook of Antioxidants; Cadenas, E., Packer, L., Eds.; Marcel Dekker: New York, NY, USA, 2002; pp. 265–277.
[15]
Olson, J.A. Bioavailability of carotenoids. Arch. Latinoam. Nutr. 1999, 49, 21–25.
[16]
Parker, R.S.; Swanson, J.E.; You, C.-S.; Edwards, A.J.; Huang, T. Bioavailability of carotenoids in human subjects. Proc. Nutr. Soc. 1999, 58, 155–162, doi:10.1079/PNS19990021.
[17]
Rodriguez-Amaya, D.B. Quantitative analysis, in vitro assessment of bioavailability and antioxidant activity of food carotenoids—A review. J. Food Compos. Anal. 2010, 23, 726–740, doi:10.1016/j.jfca.2010.03.008.
Schwartz, S.J. Food Matrix and Processing Modulates Carotenoid Bioavailability. In Proceedings of Pacifichem 2010, International Chemical Congress of Pacific Basin Societies, Honolulu, HI, USA, 15–20 December 2010.
[20]
Southon, S.; Faulks, R.M. Carotenoids in Food: Bioavailability and Functional Benefits. In Phytochemical Functional Foods; Johnson, I., Williamson, G., Eds.; Woodhead Publishing in Food Science and Technology: Cambridge, England, 2003; pp. 107–127.
[21]
Tanumihardjo, S.A.; Palacios, N.; Pixley, K.V. Provitamin A carotenoid bioavailability: What really matters? Int. J. Vitam. Nutr. Res. 2010, 80, 336–350, doi:10.1024/0300-9831/a000042.
[22]
Van het Hof, K.H.; Gaertner, C.; West, C.E.; Tijburg, L.B.M. Potential of vegetable processing to increase the delivery of carotenoids to man. Int. J. Vitam. Nutr. Res. 1998, 68, 366–370.
[23]
Yonekura, L.; Nagao, A. Intestinal absorption of dietary carotenoids. Mol. Nutr. Food Res. 2007, 51, 107–115, doi:10.1002/mnfr.200600145.
[24]
Castenmiller, J.J.M.; West, C.E. Bioavailability of carotenoids. Pure Appl. Chem. 1997, 69, 2145–2150, doi:10.1351/pac199769102145.
[25]
West, C.E.; Castenmiller, J.J.M. Quantification of the “SLAMENGHI” factors for carotenoid bioavailability and bioconversion. Int. J. Vitam. Nutr. Res. 1998, 68, 371–377.
[26]
Bresnahan, K.A.; Arscott, S.A.; Khanna, H.; Arinaitwe, G.; Dale, J.; Tushemereirwe, W.; Mondloch, S.; Tanumihardjo, J.P.; de Moura, F.F.; Tanumihardjo, S.A. Cooking enhances but the degree of ripeness does not affect provitamin A carotenoid bioavailability from bananas in Mongolian gerbils. J. Nutr. 2012, 142, 2097–2104, doi:10.3945/jn.112.167544.
[27]
Garrett, D.A.; Failla, M.L.; Sarama, R.J. Estimation of carotenoid bioavailability from fresh stir-fried vegetables using an in vitro digestion/Caco-2 cell culture model. J. Nutr. Biochem. 2000, 11, 574–580, doi:10.1016/S0955-2863(00)00122-4.
[28]
Graebner, I.T.; Siqueira, E.M.A.; Arruda, S.F.; de Souza, E.M.T. Carotenoids from native Brazilian dark-green vegetables are bioavailable: A study in rats. Nutr. Res. 2004, 24, 671–679, doi:10.1016/j.nutres.2003.10.012.
[29]
Liu, C.-S.; Glahn, R.P.; Liu, R.H. Assessment of carotenoid bioavailability of whole foods using a Caco-2 cell culture model coupled with an in vitro digestion. J. Agric. Food Chem. 2004, 52, 4330–4337, doi:10.1021/jf040028k.
[30]
O’Connell, O.; Ryan, L.; O’Sullivan, L.; Aherne-Bruce, S.A.; O’Brien, N.M. Carotenoid micellarization varies greatly between individual and mixed vegetables with or without the addition of fat or fiber. Int. J. Vitam. Nutr. Res. 2008, 78, 238–246, doi:10.1024/0300-9831.78.45.238.
[31]
Ornelas-Paz, J.D.J.; Gardea, A.A.; Yahia, E.M.; Failla, M.L. Carotenoid composition in “Ataulfo” mango and their bioavailability and bioconversion to vitamin A. Acta Hortic. 2010, 877, 1245–1252.
[32]
Ramos, M.I.L.; Siqueira, E.M.A.; Isomura, C.C.; Barbosa, A.M.J.; Arruda, S.F. Bocaiuva (Acrocomia aculeata (Jacq.) Lodd) improved vitamin A status in rats. J. Agric. Food Chem. 2007, 55, 3186–3190, doi:10.1021/jf063305r.
[33]
Yahia, E.M.; Ramirez-Padilla, G.K.; Carrillo-Lopez, A. Carotenoid content of five fruits and vegetables and their bioconversion to vitamin A measured by retinol accumulation in rat livers. Acta Hortic. 2009, 841, 619–623.
[34]
Zakaria-Rungkat, F.; Djaelani, M.; Setiana, M.; Rumondang, E.; Nurrochmah, E. Carotenoid bioavailability of vegetables and carbohydrate-containing foods measured by retinol accumulation in rat livers. J. Food Compos. Anal. 2000, 13, 297–310, doi:10.1006/jfca.2000.0871.
[35]
Perez-Galvez, A.; Martin, H.D.; Sies, H.; Stahl, W. Incorporation of carotenoids from paprika oleoresin into human chylomicrons. Br. J. Nutr. 2003, 89, 787–793, doi:10.1079/BJN2003842.
[36]
Hageman, S.H.; She, L.; Furr, H.C.; Clark, R.M. Excess vitamin E decreases canthaxanthin absorption in the rat. Lipids 1999, 34, 627–631, doi:10.1007/s11745-999-0407-3.
[37]
Brown, M.J.; Ferruzzi, M.G.; Nguyen, M.L.; Cooper, D.A.; Eldridge, A.L.; Schwartz, S.J.; White, W.S. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am. J. Clin. Nutr. 2004, 80, 396–403.
Hornero-Mendez, D.; Minquez-Mosquera, M.I. Bioaccessibility of carotenes from carrots: Effect of cooking and addition of oil. Innov. Food Sci. Emerg. Technol. 2007, 8, 407–412, doi:10.1016/j.ifset.2007.03.014.
[40]
Unlu, N.Z.; Bohn, T.; Clinton, S.K.; Schwartz, S.J. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J. Nutr. 2005, 135, 431–436.
[41]
Blas, J.; Perez-Rodriguez, L.; Bortolotti, G.R.; Vinuela, J.; Marchant, T.A. Testosterone increases bioavailability of carotenoids: Insights into the honesty of sexual signaling. Proc. Natl. Acad. Sci. USA 2006, 103, 18633–18637, doi:10.1073/pnas.0609189103.
[42]
Zuniga, K.E.; Erdman, J.W., Jr. Combined consumption of soy germ and tomato powders results in altered isoflavone and carotenoid bioavailability in rats. J. Agric. Food Chem. 2011, 59, 5335–5341, doi:10.1021/jf2004157.
[43]
Biehler, E.; Kaulmann, A.; Hoffmann, L.; Krause, E.; Bohn, T. Dietary and host-related factors influencing carotenoid bioaccessibility from spinach (Spinacia oleracea). Food Chem. 2011, 125, 1328–1334, doi:10.1016/j.foodchem.2010.09.110.
[44]
Alminger, M.; Svelander, C.; Wellner, A.; Martinez-Tomas, R.; Bialek, L.; Larque, E.; Perez-Llamas, F. Applicability of in vitro models in predicting the in vivo bioavailability of lycopene and α-carotene from differently processed soups. Food Nutr. Sci. 2012, 3, 477–489, doi:10.4236/fns.2012.34068.
[45]
Castenmiller, J.J.M.; West, C.E.; Linssen, J.P.H.; van het Hof, K.H.; Voragen, A.G.J. The food matrix of spinach is a limiting factor in determining the bioavailability of α-carotene and to a lesser extent of lutein in humans. J. Nutr. 1999, 129, 349–356.
[46]
Garrett, D.A.; Failla, M.L.; Sarama, R.J. Development of an in vitro digestion method to assess carotenoid bioavailability from meals. J. Agric. Food Chem. 1999, 47, 4301–4309, doi:10.1021/jf9903298.
[47]
Reboul, E.; Borel, P.; Mikail, C.; Abou, L.; Charbonnier, M.; Caris-Veyrat, C.; Goupy, P.; Portugal, H.; Lairon, D.; Amiot, M.-J. Enrichment of tomato paste with 6% tomato peel increases lycopene and α-carotene bioavailability in men. J. Nutr. 2005, 135, 790–794.
[48]
Ryan, L.; O’Connell, O.; O’Sullivan, L.; Aherne, S.A.; O’Brien, N.M. Micellarisation of carotenoids from raw and cooked vegetables. Plant Food Hum. Nutr. 2008, 63, 127–133, doi:10.1007/s11130-008-0081-0.
[49]
Unlu, N.Z.; Bohn, T.; Francis, D.; Clinton, S.K.; Schwartz, S.J. Carotenoid absorption in humans consuming tomato sauces obtained from tangerine or high-β-carotene varieties of tomatoes. J. Agric. Food Chem. 2007, 55, 1597–1603, doi:10.1021/jf062337b.
[50]
Van het Hof, K.H.; de Boer, B.C.J.; Tijburg, L.B.M.; Lucius, B.R.H.M.; Zijp, I.; West, C.E.; Hautvast, J.G.A.J.; Weststrate, J.A. Carotenoid bioavailability in humans from tomatoes processed in different ways determined from the carotenoid response in the triglyceride-rich lipoprotein fraction of plasma after a single consumption and in plasma after four days of consumption. J. Nutr. 2000, 130, 1189–1196.
[51]
Chitchumroonchockchai, C.; Failla, M.L. Hydrolysis of zeaxanthin esters by carboxyl ester lipase during digestion facilitates micellarization and uptake of the xanthophyll by Caco-2 human intestinal cells. J. Nutr. 2006, 136, 588–594.
[52]
Odeberg, J.M.; Lignell, A.; Pettersson, A.; Hoglund, P. Oral bioavailability of the antioxidant astaxanthin in humans is enhanced by incorporation of lipid based formulations. Eur. J. Pharm. Sci. 2003, 19, 299–304, doi:10.1016/S0928-0987(03)00135-0.
[53]
O’Sullivan, L.; Aherne, S.A.; O’Brien, N.M. Investigation of β-carotene and lutein transport in Caco-2 cells: Carotenoid-carotenoid interactions and transport inhibition by ezetimibe. Int. J. Vitam. Nutr. Res. 2009, 79, 337–347, doi:10.1024/0300-9831.79.56.337.
[54]
Sy, C.; Gleize, B.; Dangles, O.; Landrier, J.-F.; Veyrat, C.C.; Borel, P. Effects of physicochemical properties of carotenoids on their bioaccessibility, intestinal cell uptake, and blood and tissue concentrations. Mol. Nutr. Food Res. 2012, 56, 1385–1397, doi:10.1002/mnfr.201200041.
[55]
Cardinault, N.; Tyssandier, V.; Grolier, P.; Winklhofer-Roob, B.M.; Ribalta, J.; Bouteloup-Demenage, C.; Rock, E.; Borel, P. Comparison of the postprandial chylomicron carotenoid responses in young and older subjects. Eur. J. Nutr. 2003, 42, 315–323, doi:10.1007/s00394-003-0426-2.
[56]
Lim, J.Y.; Lee, H.-J.; Park, S.J.; Choi, H.-M. Factors effecting the bioavailability of carotenoid in elderly Korean women. Taehan Chiyok Sahoe Yongyang Hakhoechi 2003, 8, 822–830.
[57]
Dewick, P.M. Medicinal Natural Products; John Wiley & Sons: New York, NY, USA, 1997.
[58]
Khan, N.; Monagas, M.; Liorach, R.; Urpi-Sarda, M.; Rabassa, M.; Estuch, R.; Andres-Lacueva, C. Targeted and metabolomic study of biomarkers of cocoa powder consumption: Effects on inflammatory biomarkers in patients at high risk of cardiovascular disease. Agro Food Ind. Hi Tech 2010, 21, 51–54.
[59]
Scalbert, A.; Rios, L.Y.; Gonthier, M.-P.; Manach, C.; Morand, C.; Remesy, C. The specificity of cocoa polyphenols recent advances in their bioavailability. Polyphen. Actual. 2002, 22, 14–18.
[60]
Wakame, K.; Kitadate, K. Function of oligonol, low-molecular weight polyphenol of new generation. Aromatopia 2011, 107, 87–91.
[61]
Lambert, J.D.; Yang, C.S. Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutat. Res. 2003, 523–524, 201–208, doi:10.1016/S0027-5107(02)00336-6.
[62]
Lambert, J.D.; Hong, J.; Lee, M.-J.; Sang, S.; Meng, X.; Lu, H.; Yang, C.S. Biotransformation and bioavailability of tea polyphenols: Implications for cancer prevention research. ACS Symp. Ser. 2005, 909, 212–224, doi:10.1021/bk-2005-0909.ch018.
Belles, V.V.; Franch, P.C.; San-Jose, L.G.; Rodriguez, P.M. Bioavailability of flavonoids in beer. In vivo antioxidant effects. Part I. Cerveza Malta 2009, 46, 65–71.
[65]
Urquiaga, I.; Leighton, F. Wine and health: Evidence and mechanisms. World Rev. Nutr. Diet. 2005, 95, 122–139, doi:10.1159/000088299.
[66]
D’Archivio, M.; Filesi, C.; di benedetto, R.; Garguilo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanita 2007, 43, 348–361.
[67]
Konishi, T.; Rahman, M.M. Improving the Bioavailability of Polyphenols. In Biotechnology in Functional Foods and Nutraceuticals; Bagchi, D., Lau, F.C., Ghosh, D.K., Eds.; CRC: Boca Raton, FL, USA, 2010; pp. 81–90.
[68]
Manach, C.; Scalbert, A.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747.
[69]
Salucci, M.; Bugianesi, R.; Maiani, G. Dietary flavonoids: Intake and bioavailability. Recent Res. Dev. Nutr. 2001, 4, 65–79.
[70]
Scheepens, A.; Tan, K.; Paxton, J.W. Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes Nutr. 2010, 5, 75–87, doi:10.1007/s12263-009-0148-z.
[71]
Bitsch, R.; Netzel, M.; Carle, E.; Strass, G.; Kesenheimer, B.; Herbst, M.; Bitsch, I. Bioavailability of antioxidative compounds from Brettacher apple juice in humans. Innov. Food Sci. Emerg. Technol. 2000, 1, 245–249, doi:10.1016/S1466-8564(00)00026-6.
[72]
Cherubini, A.; Beal, M.F.; Frei, B. Black tea increases the resistance of human plasma to lipid peroxidation in vitro, but not ex vivo. Free Radic. Biol. Med. 1999, 27, 381–387, doi:10.1016/S0891-5849(99)00064-7.
[73]
Nifli, A.-P.; Kampa, M.; Alexaki, V.-I.; Notas, G.; Castanas, E. Polyphenol interaction with the T47D human breast cancer cell line. J. Dairy Res. 2005, 72, 44–50, doi:10.1017/S0022029905001172.
[74]
Carbonaro, M.; Grant, G.; Pusztai, A. Evaluation of polyphenol bioavailability in rat small intestine. Eur. J. Nutr. 2001, 40, 84–90, doi:10.1007/s003940170020.
[75]
Ho, L.; Ferruzzi, M.G.; Janle, E.M.; Wang, J.; Gong, B.; Chen, T.-Y.; Lobo, J.; Cooper, B.; Wu, Q.L.; Talcott, S.T. Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer’s disease. FASEB J. 2013, 27, 769–781, doi:10.1096/fj.12-212118.
[76]
Ferruzzi, M.G.; Lobo, J.K.; Janle, E.M.; Cooper, B.; Simon, J.E. Bioavailability of gallic acid and catechins from grape seed polyphenol extract is improved by repeated dosing in rats: Implications for treatment in Alzheimer’s disease. J. Alzheimer’s Dis. 2009, 18, 113–124.
[77]
Redeuil, K.; Smarrito-Menozzi, C.; Guy, P.; Rezzi, S.; Dionisi, F.; Williamson, G.; Nagy, K.; Renouf, M. Identification of novel circulating coffee metabolites in human plasma by liquid chromatography-mass spectrometry. J. Chromatogr. A 2011, 1218, 4678–4688, doi:10.1016/j.chroma.2011.05.050.
[78]
Maeda-Yamamoto, M.; Ema, K.; Tokuda, Y.; Monobe, M.; Tachibana, H.; Sameshima, Y.; Kuriyama, S. Effect of green tea powder (Camellia sinensis L. cv. Benifuuki) particle size on O-methylated EGCG absorption in rats; The Kakegawa Study. Cytotechnology 2011, 63, 171–179, doi:10.1007/s10616-010-9331-8.
[79]
Renouf, M.; Guy, P.; Marmet, C.; Longet, K.; Fraering, A.-L.; Moulin, J.; Barron, D.; Dionisi, F.; Cavin, C.; Steiling, H. Plasma appearance and correlation between coffee and green tea metabolites in human subjects. Br. J. Nutr. 2010, 104, 1635–1640, doi:10.1017/S0007114510002709.
[80]
Koli, R.; Erlund, I.; Jula, A.; Marniemi, J.; Mattila, P.; Alfthan, G. Bioavailability of various polyphenols from a diet containing moderate amounts of berries. J. Agric. Food Chem. 2010, 58, 3927–3932, doi:10.1021/jf9024823.
[81]
Gonzalez-Barrio, R.; Borges, G.; Mullen, W.; Crozier, A. Bioavailability of anthocyanins and ellagitannins following consumption of raspberries by healthy humans and subjects with an ileostomy. J. Agric. Food Chem. 2010, 58, 3933–3939, doi:10.1021/jf100315d.
[82]
Ferruzzi, M.G.; Green, R.J.; Peters, C.M.; Neilson, A.P.; Janle, E.M. The influence of food formulation on digestive behavior and bioavailability of catechin polyphenols. Acta Hortic. 2009, 841, 121–127.
[83]
Keogh, J.B.; McInerney, J.; Clifton, P.M. The effect of milk protein on the bioavailability of cocoa polyphenols. J. Food Sci. 2007, 72, S230–S233, doi:10.1111/j.1750-3841.2007.00314.x.
[84]
Dupas, C.J.; Marsset-Bagllieri, A.C.; Ordonaud, C.S.; Ducept, F.M.G.; Maillard, M.-N. Coffee antioxidant properties: Effects of milk addition and processing conditions. J. Food Sci. 2006, 71, S253–S258, doi:10.1111/j.1365-2621.2006.tb15650.x.
[85]
Biasutto, L.; Marotta, E.; de Marchi, U.; Zoratti, M.; Paradisi, C. Ester-based precursors to increase the bioavailability of quercetin. J. Med. Chem. 2007, 50, 241–253, doi:10.1021/jm060912x.
[86]
Rogerio, A.P.; Dora, C.L.; Andrade, E.L.; Chaves, J.S.; Silva, L.F.C.; Lemos-Senna, E.; Calixto, J.B. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacol. Res. 2010, 61, 288–297, doi:10.1016/j.phrs.2009.10.005.
[87]
Mazzarino, L.; Silva, L.F.C.; Curta, J.C.; Licinio, M.A.; Costa, A.; Pacheco, L.K.; Siqueira, J.M.; Montanari, J.; Romero, E.; Assreuy, J.; et al. Curcumin-loaded lipid and polymeric nanocapsules stabilized by nonionic surfactants: An in vitro and in vivo antitumor activity on B16-F10 melanoma and macrophage uptake comparative study. Biomed. Nanotechnol. 2011, 7, 406–414, doi:10.1166/jbn.2011.1296.
[88]
Gladine, C.; Rock, E.; Morand, C.; Bauchart, D.; Durand, D. Bioavailability and antioxidant capacity of plant extracts rich in polyphenols, given as a single acute dose, in sheep made highly susceptible to lipoperoxidation. Br. J. Nutr. 2007, 98, 691–701.
[89]
Agawa, S.; Sakakibara, H.; Iwata, R.; Shimoi, K.; Hergesheimer, A.; Kumazawa, S. Anthocyanins in mesocarp/epicarp and endocarp of fresh acai (Euterpe oleracea Mart.) and their antioxidant activities and bioavailability. Food Sci. Technol. Res. 2011, 17, 327–334, doi:10.3136/fstr.17.327.
[90]
Holst, B.; Williamson, G. A critical review of the bioavailability of glucosinolates and related compounds. Nat. Prod. Rep. 2004, 21, 425–447, doi:10.1039/b204039p.
[91]
Higdon, J.V.; Delage, B.; Williams, D.E.; Dashwood, R.H. Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacol. Res. 2007, 55, 224–236, doi:10.1016/j.phrs.2007.01.009.
[92]
Cartea, M.E.; Velaco, P. Glucosinolates in Brassica foods: Bioavailability in food and significance for human health. Phytochem. Rev. 2008, 7, 213–229, doi:10.1007/s11101-007-9072-2.
[93]
Johnson, I.T. Glucosinolates in the human diet. Bioavailability and implications for health. Phytochem. Rev. 2003, 1, 183–188, doi:10.1023/A:1022507300374.
[94]
Tomas-Barberan, F.A.; Gil-Izquierdo, A.; Moreno, D.A. Bioavailability and Metabolism of Phenolic Compounds and Glucosinolates. In Designing Functional Foods. Measuring and Controlling Food Structure Breakdown and Nutrient Absorption; McClements, D.A., Decker, E.A., Eds.; CRC Press: Woodhead Publishing Limited, Cambridge, UK, 2009; pp. 194–229.
[95]
Kensler, T.W.; Chen, J.-G.; Egner, P.A.; Fahey, J.W.; Jacobson, L.P.; Stephenson, K.K.; Ye, L.; Coady, J.L.; Wang, J.-B.; Wu, Y. Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People’s Republic of China. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2605–2613, doi:10.1158/1055-9965.EPI-05-0368.
[96]
Shrivastava, S. S-allyl-cysteines reduce amelioration of aluminum induced toxicity in rats. Am. J. Biochem. Biotechnol. 2011, 7, 74–83, doi:10.3844/ajbbsp.2011.74.83.
[97]
Singh, Y.P.; Singh, R.A. Insilico studies of organosulfur-functional active compounds in garlic. BioFactors 2010, 36, 297–311, doi:10.1002/biof.102.