Plant phytochemicals are described as possessing considerable neuroprotective properties, due to radical scavenging capacity and acetylcholinesterase inhibitory activity, important bioactivities in neurodegeneration. Antirrhinum lopesianum is a rare endemism from the Iberian Peninsula, occurring at the northeastern border between Portugal and Spain. It is classified as Endangered, due to its highly fragmented geographical occupation, facing a high risk of extinction in the Portuguese territory, within 20 years. Here, we describe for the first time the chemical characterization of extracts of the species concerning total phenol content, flavonoid content and antioxidant properties. The profile of high performance liquid chromatography with diode array detector (HPLC-DAD) of the polyphenol-enriched fraction of plant extracts was also performed, showing the great potential of the species as a source of bioactive phytochemical compounds. A. lopesianum’s potential for neuroprotection was revealed by a significant acetylcholinesterase inhibitory activity and also by a neuroprotective effect on a human cell model of neurodegeneration. Moreover, this is the first report describing a successful procedure for the in vitro propagation of this endangered species. The comparison of phenolic content and the HPLC-DAD profile of wild and in vitro propagated plants revealed that in vitro plants maintain the ability to produce secondary metabolites, but the profiles are differentially affected by the growth regulators. The results presented here greatly contribute to the value for this species regarding its potential as a source of phytochemicals with prospective neuroprotective health benefits.
References
[1]
Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 2003, 66, 1022–1037, doi:10.1021/np030096l.
[2]
Yuliana, N.D.; Khatib, A.; Choi, Y.H.; Verpoorte, R. Metabolomics for bioactivity assessment of natural products. Phytother. Res. 2011, 25, 157–169.
[3]
Saklani, A.; Kutty, S.K. Plant-derived compounds in clinical trials. Drug Discov. Today 2008, 13, 161–171, doi:10.1016/j.drudis.2007.10.010.
[4]
Lee, D.H.; Iwanski, G.B.; Thoennissen, N.H. Cucurbitacin: Ancient compound shedding new light on cancer treatment. Sci. World J. 2010, 10, 413–418.
[5]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007, 70, 461–477, doi:10.1021/np068054v.
[6]
Mandel, S.; Amit, T.; Reznichenko, L.; Weinreb, O.; Youdim, M.B.H. Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol. Nutr. Food. Res. 2006, 50, 229–234, doi:10.1002/mnfr.200500156.
[7]
Ramassamy, C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets. Eur. J. Pharmacol. 2006, 545, 51–64, doi:10.1016/j.ejphar.2006.06.025.
[8]
Williams, P.; Sorribas, A.; Howes, M.-J.R. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep. 2011, 28, 48–77, doi:10.1039/c0np00027b.
[9]
Beking, K.; Vieira, A. Flavonoid intake and disability-adjusted life years due to Alzheimer’s and related dementias: A population-based study involving twenty-three developed countries. Public Health Nutr. 2010, 13, 1403–1409, doi:10.1017/S1368980009992990.
[10]
Wimo, A.; Jonsson, L.; Gustavsson, A.; McDaid, D.; Ersek, K.; Georges, J.; Gulacsi, L.; Karpati, K.; Kenigsberg, P.; Valtonen, H. The economic impact of dementia in Europe in 2008-cost estimates from the Eurocode project. Int. J. Geriatr. Psychiatry 2011, 26, 825–832.
[11]
Andersen, J.K. Oxidative stress in neurodegeneration: Cause or consequence? Nat. Med. 2004, 10, S18–S25, doi:10.1038/nrn1434.
[12]
Bachurin, S.O. Medicinal chemistry approaches for the treatment and prevention of Alzheimer’s disease. Med. Chem. Res. 2003, 23, 48–88.
[13]
Thanvi, B.R.; Lo, T.C.N. Update on myasthenia gravis. Postgrad. Med. J. 2004, 80, 690–700, doi:10.1136/pgmj.2004.018903.
[14]
Soreq, H.; Seidman, S. Acetylcholinesterase—New roles for an old actor. Nat. Rev. Neurosci. 2001, 2, 294–302, doi:10.1038/35067589.
[15]
Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine 2007, 14, 289–300, doi:10.1016/j.phymed.2007.02.002.
[16]
Nordberg, A.; Svensson, A.L. Cholinesterase inhibitors in the treatment of Alzheimer’s disease: A comparison of tolerability and pharmacology. Drug Saf. 1998, 19, 465–480.
[17]
Perry, G.; Nunomura, A.; Hirai, K.; Zhu, X.; Perez, M.; Avila, J.; Castellani, R.J.; Atwood, C.S.; Aliev, G.; Sayre, L.M.; et al. Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic. Biol. Med. 2002, 33, 1475–1479.
[18]
Vargas, P.; Carrió, E.; Guzmán, B.; Amat, E.; Güemes, J. A geographical pattern of Antirrhinum (Scrophulariaceae) speciation since the Pliocene based on plastid and nuclear DNA polymorphisms. J. Biogeogr. 2009, 36, 1297–1312, doi:10.1111/j.1365-2699.2008.02059.x.
[19]
Amich García, F.; Bernardos Hernández, S.; González Talaván, A.; Barreto Caldas, F.; Alves, P. IUCN Red List of Threatened Species, Version 2013.1. >Antirrhinum lopesianum. Available online: http://www.iucnredlist.org (accessed on 15 July 2013).
[20]
Amich, F.; Rodríguez, J.A.S.; Gallego, F.; Anta, M.S. Antirrhinum lopesianum Rothm., novedad para la flora espa?ola. Bol. Soc. Brot. 1989, 62, 231–237.
[21]
Coutinho, A.X.P. Apontamentos para o estudo da flora transmontana. Bol. Soc. Brot. 1883, 2, 129–163.
[22]
Lopes, J.M.M. A flora do concelho de Vimioso e arredores. Bol. Soc. Brot. 1926, 4, 234–278.
[23]
Rothmaler, W. Taxonomische Monographie der Gattung Antirrhinum; Akademie Verlag: Berlin, Germany, 1956.
[24]
Aguiar, C. Distribui??o Geográfica e Estatuto de Amea?a das espécies da Flora a Proteger; ESAB: Bragan?a, Portugal, 1996.
[25]
Bernardos, S.; Amado, A.; Aguiar, C.; Santos, C.; Fernández-Diez, J.; González-Talaván, A.; Amich, F. Conservation status of the threatened Iberian Peninsula narrow endemic Antirrhinum lopesianum Rothm. (Scrophulariaceae). Plant Biosyst. 2006, 140, 2–9.
[26]
Directive 92/43 of the Council of the European Community on the Conservation of Habitats and Wild Fauna and Flora; European Community: Brussels, Belgium, 1992.
[27]
Bilz, M.; Kell, S.P.; Maxted, N.; Lansdown, R.V. European Red List of Vascular Plants; Publications Office of the European Union: Luxembourg, Luxembourg, 2011.
[28]
Almeida, R.; Gon?alves, S.; Romano, A. In vitro micropropagation of endangered Rhododendron ponticum L. subsp. baeticum (Boissier & Reuter) Handel-Mazzetti. Biodivers. Conserv. 2005, 14, 1059–1069.
[29]
Guo, B.; Gao, M.; Liu, C.-Z. In vitro propagation of an endangered medicinal plant Saussurea involucrata Kar. et Kir. Plant Cell Rep. 2007, 26, 261–265, doi:10.1007/s00299-006-0230-6.
[30]
Ket, N.V.; Hahn, E.J.; Park, S.Y.; Chakrabarty, D.; Paek, K.Y. Micropropagation of an endangered orchid Anoectochilus formosanus. Biol. Plant. 2004, 48, 339–344, doi:10.1023/B:BIOP.0000041084.77832.11.
[31]
Mao, A.; Kaliamoorthy, S.; Ranyaphi, R.; Das, J.; Gupta, S.; Athili, J.; Yumnam, J.; Chanu, L. In vitro micropropagation of three rare, endangered, and endemic rhododendron species of Northeast India. In Vitro Cell Dev.Biol. Plant 2011, 47, 674–681.
[32]
Piovan, A.; Cassina, G.; Filippini, R. Crambe tataria: Actions for ex situ conservation. Biodivers. Conserv. 2011, 20, 359–371, doi:10.1007/s10531-010-9949-z.
[33]
Remya, M.; Narmatha Bai, V.; Mutharaian, V. In vitro regeneration of Aristolochia tagala and production of artificial seeds. Biol. Plant. 2013, 57, 210–218, doi:10.1007/s10535-012-0280-2.
[34]
Tavares, L.; Fortalezas, S.; Carrilho, C.; McDougall, G.J.; Stewart, D.; Ferreira, R.B.; Santos, C.N. Antioxidant and antiproliferative properties of strawberry tree tissues. J. Berry Res. 2010, 1, 3–12.
[35]
Fortalezas, S.; Tavares, L.; Pimp?o, R.; Tyagi, M.; Pontes, V.; Alves, P.M.; McDougall, G.; Stewart, D.; Ferreira, R.B.; Santos, C.N. Antioxidant properties and neuroprotective capacity of strawberry tree fruit (Arbutus unedo). Nutrients 2010, 2, 214–229.
[36]
Tavares, L.; Carrilho, D.; Tyagi, M.; Barata, D.; Serra, A.T.; Duarte, C.M.M.; Duarte, R.O.; Feliciano, R.P.; Bronze, M.R.; Chicau, P.; et al. Antioxidant capacity of Macaronesian traditional medicinal plants. Molecules 2010, 15, 2576–2592.
[37]
Ellman, G.L.; Courtney, K.D.; Andres, V.J.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95.
[38]
Tavares, L.; Fortalezas, S.; Tyagi, M.; Barata, D.; Serra, A.; Duarte, C.; Duarte, R.; Feliciano, R.; Bronze, M.; Espírito-Santo, M.; et al. Bioactive compounds from endemic plants of Southwest Portugal: Inhibition of acetylcholinesterase and radical scavenging activities. Pharma Biol. 2011, 50, 239–246.
[39]
Tavares, L.; McDougall, G.J.; Fortalezas, S.; Stewart, D.; Ferreira, R.B.; Santos, C.N. The neuroprotective potential of phenolic-enriched fractions from four Juniperus species found in Portugal. Food Chem. 2012, 135, 562–570.
[40]
Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497, doi:10.1111/j.1399-3054.1962.tb08052.x.
Nacif de Abreu, I.; Mazzafera, P. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense choisy. Plant Physiol. Biochem. 2005, 43, 241–248, doi:10.1016/j.plaphy.2005.01.020.
[43]
Lin, K.-H.; Chao, P.-Y.; Yang, C.-M.; Cheng, W.-C.; Lo, H.-F.; Chang, T.-R. The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves. Bot. Stud. 2006, 47, 417–426.
[44]
Ross, H.A.; McDougall, G.J.; Stewart, D. Antiproliferative activity is predominantly associated with ellagitannins in raspberry extracts. Phytochemistry 2007, 68, 218–228.
[45]
Bammidi, S.R.; Volluri, S.S.; Chippada, S.C.; Avanigadda, S.; Vangalapati, M. A review on pharmacological studies of Bacopa monniera. J. Chem. Biol. Phys. Sci. 2011, 1, 250–259.
[46]
Kolak, U.; Boga, M.; Urusak, E.A.; Ulubelen, A. Constituents of Plantago major subsp. intermedia with antioxidant and anticholinesterase capacities. Turk. J. Chem. 2011, 35, 637–645.
[47]
Chung, Y.K.; Heo, H.J.; Kim, E.K.; Kim, H.K.; Huh, T.L.; Lim, Y.; Kim, S.K.; Shin, D.H. Inhibitory effect of ursolic acid purified from Origanum majorana L. on the acetylcholinesterase. Mol. Cells 2001, 11, 137–143.
[48]
El-Hassan, A.; El-Sayed, M.; Hamed, A.I.; Rhee, I.K.; Ahmed, A.A.; Zeller, K.P.; Verpoorte, R. Bioactive constituents of Leptadenia arborea. Fitoterapia 2003, 74, 184–187.
[49]
Schaffer, S.; Halliwell, B. Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. Genes Nutr. 2012, 7, 99–109.
[50]
Genebank Standards; Food and Agriculture Organization of the United Nations, International Plant Genetic Resources Institute: Rome, Italy, 1994.
[51]
Atkinson, N.J.; Ford-Lloyd, B.V.; John Newbury, H. Regeneration of plants from Antirrhinum majus L. callus. Plant Cell Tissue Org. 1989, 17, 59–70.
[52]
Gonzalez-Benito, M.E.; Tapia, J.; Rodriguez, N.; Iriondo, J.M. Micropropagation of commercial and wild genotypes of snapdragon (Antirrhinum spp.). J. Hortic. Sci. 1996, 71, 11–15.
[53]
Sangwan, R.S.; Detrez, C.; Sangwan-Norreel, B.S. In vitro culture of shoot-tip meristems in some higher plants. Acta Hortic. (ISHS) 1987, 212, 661–666.
[54]
Arnold, S.V.; Eriksson, T. Induction of adventitious buds on embryos of Norway spruce grown in vitro. Physiol. Plant 1978, 44, 283–287.
[55]
Qiu, J.; Xue, X.; Chen, F.; Li, C.; Bolat, N.; Wang, X.; Baima, Y.; Zhao, Q.; Zhao, D.; Ma, F. Quality evaluation of snow lotus (Saussurea): quantitative chemical analysis and antioxidant activity assessment. Plant Cell Rep. 2010, 29, 1325–1337.
[56]
Danova, K.; ?ellárová, E.; Macková, A.; Daxnerová, Z.; Kapchina-Toteva, V. In vitro culture of Hypericum rumeliacum Boiss. and production of phenolics and flavonoids. In Vitro Cell Dev. Biol. Plant 2010, 46, 422–429.
[57]
Robards, K.; Antolovich, M. Analytical chemistry of fruit bioflavonoids—A review. Analyst 1997, 122, 11R–34R.
[58]
Amat, A.; Clementi, C.; De Angelis, F.; Sgamellotti, A.; Fantacci, S. Absorption and emission of the apigenin and luteolin flavonoids: A TDDFT investigation. J. Phys. Chem. A 2009, 113, 15118–15126.