全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibiotics  2013 

Rifampicin Resistance: Fitness Costs and the Significance of Compensatory Evolution

DOI: 10.3390/antibiotics2020206

Keywords: tuberculosis, Salmonella, genomics, genetics, combination therapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Seventy years after the introduction of antibiotic chemotherapy to treat tuberculosis, problems caused by drug-resistance in Mycobacterium tuberculosis have become greater than ever. The discovery and development of novel drugs and drug combination therapies will be critical to managing these problematic infections. However, to maintain effective therapy in the long-term and to avoid repeating the mistakes of the past, it is essential that we understand how resistance to antibiotics evolves in M. tuberculosis. Recent studies in genomics and genetics, employing both clinical isolates and model organisms, have revealed that resistance to the frontline anti-tuberculosis drug, rifampicin, is very strongly associated with the selection of fitness compensatory mutations in the different subunits of RNA polymerase. This mode of resistance evolution may also apply to other drugs, and knowledge of the rates and mechanisms could be used to design improved diagnostics and by tracking the evolution of infectious strains, to inform the optimization of therapies.

References

[1]  Kimbrough, W.; Saliba, V.; Dahab, M.; Haskew, C.; Checchi, F. The burden of tuberculosis in crisis-affected populations: A systematic review. Lancet Infect. Dis. 2012, 12, 950–965, doi:10.1016/S1473-3099(12)70225-6.
[2]  Chang, K.C.; Nuermberger, E.L. 2011: The year in review. Part I: Tuberculosis. Int. J. Tuberc. Lung Dis. 2012, 16, 740–748, doi:10.5588/ijtld.12.0139.
[3]  Diacon, A.H.; von Groote-Bidlingmaier, F.; Donald, P.R. From magic mountain to table mountain. Swiss Med. Wkly 2012, 142, w13665.
[4]  Ballell, L.; Bates, R.H.; Young, R.J.; Alvarez-Gomez, D.; Alvarez-Ruiz, E.; Barroso, V.; Blanco, D.; Crespo, B.; Escribano, J.; Gonzalez, R.; et al. Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. ChemMedChem 2013, 8, 313–321, doi:10.1002/cmdc.201200428.
[5]  Almeida Da Silva, P.E.; Palomino, J.C. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: Classical and new drugs. J. Antimicrob. Chemother. 2011, 66, 1417–1430, doi:10.1093/jac/dkr173.
[6]  Chang, K.C.; Yew, W.W. Management of difficult multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis: Update 2012. Respirology 2013, 18, 8–21, doi:10.1111/j.1440-1843.2012.02257.x.
[7]  Hughes, D.; Andersson, D.I. Selection of resistance at lethal and non-lethal antibiotic concentrations. Curr. Opin. Microbiol. 2012, 15, 555–560, doi:10.1016/j.mib.2012.07.005.
[8]  Maggi, N.; Pasqualucci, C.R.; Ballotta, R.; Sensi, P. Rifampicin: A new orally active rifamycin. Chemotherapy 1966, 11, 285–292, doi:10.1159/000220462.
[9]  Grumbach, F.; Canetti, G.; Le Lirzin, M. Rifampicin in daily and intermittent treatment of experimental murine tuberculosis, with emphasis on late results. Tubercle 1969, 50, 280–293, doi:10.1016/0041-3879(69)90053-1.
[10]  World Health Organization. Treatment of tuberculosis: Guidelines, 4th; 2010.
[11]  Jindani, A.; Dore, C.J.; Mitchison, D.A. Bactericidal and sterilizing activities of antituberculosis drugs during the first 14 days. Am. J. Respir. Crit. Care Med. 2003, 167, 1348–1354, doi:10.1164/rccm.200210-1125OC.
[12]  Campbell, E.A.; Korzheva, N.; Mustaev, A.; Murakami, K.; Nair, S.; Goldfarb, A.; Darst, S.A. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell 2001, 104, 901–912, doi:10.1016/S0092-8674(01)00286-0.
[13]  Jin, D.J.; Gross, C.A. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J. Mol. Biol. 1988, 202, 45–58, doi:10.1016/0022-2836(88)90517-7.
[14]  Telenti, A.; Imboden, P.; Marchesi, F.; Lowrie, D.; Cole, S.; Colston, M.J.; Matter, L.; Schopfer, K.; Bodmer, T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 1993, 341, 647–650.
[15]  Wrande, M.; Roth, J.R.; Hughes, D. Accumulation of mutants in “aging” bacterial colonies is due to growth under selection, not stress-induced mutagenesis. Proc. Natl. Acad. Sci. USA 2008, 105, 11863–11868, doi:10.1073/pnas.0804739105.
[16]  O’Neill, A.J.; Huovinen, T.; Fishwick, C.W.; Chopra, I. Molecular genetic and structural modeling studies of Staphylococcus aureus RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. Antimicrob. Agents Chemother. 2006, 50, 298–309, doi:10.1128/AAC.50.1.298-309.2006.
[17]  Heep, M.; Brandstatter, B.; Rieger, U.; Lehn, N.; Richter, E.; Rusch-Gerdes, S.; Niemann, S. Frequency of rpoB mutations inside and outside the cluster I region in rifampin-resistant clinical Mycobacterium tuberculosis isolates. J. Clin. Microbiol. 2001, 39, 107–110.
[18]  Ramaswamy, S.; Musser, J.M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber. Lung Dis. 1998, 79, 3–29, doi:10.1054/tuld.1998.0002.
[19]  Williamson, D.A.; Roberts, S.A.; Bower, J.E.; Vaughan, R.; Newton, S.; Lowe, O.; Lewis, C.A.; Freeman, J.T. Clinical failures associated with rpob mutations in phenotypically occult multidrug-resistant Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 2012, 16, 216–220, doi:10.5588/ijtld.11.0178.
[20]  Gumbo, T. New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob. Agents Chemother. 2010, 54, 1484–1491, doi:10.1128/AAC.01474-09.
[21]  Brandis, G.; Wrande, M.; Liljas, L.; Hughes, D. Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Mol. Microbiol. 2012, 85, 142–151, doi:10.1111/j.1365-2958.2012.08099.x.
[22]  Namouchi, A.; Didelot, X.; Schock, U.; Gicquel, B.; Rocha, E.P. After the bottleneck: Genome-wide diversification of the Mycobacterium tuberculosis complex by mutation, recombination, and natural selection. Genome Res. 2012, 22, 721–734, doi:10.1101/gr.129544.111.
[23]  Andersson, D.I.; Hughes, D. Antibiotic resistance and its cost: Is it possible to reverse resistance? Nat. Rev. 2010, 8, 260–271.
[24]  Bjorkman, J.; Hughes, D.; Andersson, D.I. Virulence of antibiotic-resistant Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 1998, 95, 3949–3953.
[25]  Andersson, D.I.; Hughes, D. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol. Rev. 2011, 35, 901–911, doi:10.1111/j.1574-6976.2011.00289.x.
[26]  Andersson, D.I.; Hughes, D. Effects of Antibiotic Resistance on Bacterial Fitness, Virulence, and Transmission. In Evolutionary Biology of Bacterial and Fungal Pathogens; Baquero, F., Nombela, C., Cassell, G.H., Gutiérrez-Fuentes, J.A., Eds.; ASM Press: Washington, DC, USA, 2007; pp. 307–318.
[27]  Rozen, D.E.; McGee, L.; Levin, B.R.; Klugman, K.P. Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2007, 51, 412–416, doi:10.1128/AAC.01161-06.
[28]  Marcusson, L.L.; Frimodt-Moller, N.; Hughes, D. Interplay in the selection of fluoroquinolone resistance and bacterial fitness. PLoS Pathog. 2009, 5, e1000541, doi:10.1371/journal.ppat.1000541.
[29]  Hall, A.R.; MacLean, R.C. Epistasis buffers the fitness effects of rifampicin-resistance mutations in Pseudomonas aeruginosa. Evolution 2011, 65, 2370–2379, doi:10.1111/j.1558-5646.2011.01302.x.
[30]  Gullberg, E.; Cao, S.; Berg, O.G.; Ilback, C.; Sandegren, L.; Hughes, D.; Andersson, D.I. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011, 7, e1002158, doi:10.1371/journal.ppat.1002158.
[31]  Sander, P.; Springer, B.; Prammananan, T.; Sturmfels, A.; Kappler, M.; Pletschette, M.; Bottger, E.C. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents Chemother. 2002, 46, 1204–1211, doi:10.1128/AAC.46.5.1204-1211.2002.
[32]  Bottger, E.C.; Springer, B. Tuberculosis: Drug resistance, fitness, and strategies for global control. Eur. J. Pediatr. 2008, 167, 141–148, doi:10.1007/s00431-007-0606-9.
[33]  Billington, O.J.; McHugh, T.D.; Gillespie, S.H. Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 1999, 43, 1866–1869.
[34]  Ward, H.; Perron, G.G.; Maclean, R.C. The cost of multiple drug resistance in Pseudomonas aeruginosa. J. Evol. Biol. 2009, 22, 997–1003.
[35]  Fenner, L.; Egger, M.; Bodmer, T.; Altpeter, E.; Zwahlen, M.; Jaton, K.; Pfyffer, G.E.; Borrell, S.; Dubuis, O.; Bruderer, T.; et al. Effect of mutation and genetic background on drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2012, 56, 3047–3053.
[36]  Shcherbakov, D.; Akbergenov, R.; Matt, T.; Sander, P.; Andersson, D.I.; Bottger, E.C. Directed mutagenesis of Mycobacterium smegmatis 16S rRNA to reconstruct the in-vivo evolution of aminoglycoside resistance in Mycobacterium tuberculosis. Mol. Microbiol. 2010, 77, 830–840.
[37]  Williams, D.L.; Spring, L.; Collins, L.; Miller, L.P.; Heifets, L.B.; Gangadharam, P.R.; Gillis, T.P. Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 1998, 42, 1853–1857.
[38]  Pang, Y.; Lu, J.; Wang, Y.; Song, Y.; Wang, S.; Zhao, Y. Study of the rifampin mono-resistance mechanism in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2013, 57, 893–900, doi:10.1128/AAC.01024-12.
[39]  Trautinger, B.W.; Lloyd, R.G. Modulation of DNA repair by mutations flanking the DNA channel through rna polymerase. EMBO J. 2002, 21, 6944–6953.
[40]  Gagneux, S.; Long, C.D.; Small, P.M.; Van, T.; Schoolnik, G.K.; Bohannan, B.J. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 2006, 312, 1944–1946.
[41]  Mariam, D.H.; Mengistu, Y.; Hoffner, S.E.; Andersson, D.I. Effect of rpob mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2004, 48, 1289–1294, doi:10.1128/AAC.48.4.1289-1294.2004.
[42]  Reynolds, M.G. Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 2000, 156, 1471–1481.
[43]  Bartlett, M.S.; Gaal, T.; Ross, W.; Gourse, R.L. RNA polymerase mutants that destabilize RNA polymerase-promoter complexes alter NTP-sensing by rrn P1 promoters. J. Mol. Biol. 1998, 279, 331–345, doi:10.1006/jmbi.1998.1779.
[44]  Zhou, Y.N.; Jin, D.J. The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like “stringent” RNA polymerases in Escherichia coli. Proc. Natl. Acad. Sci. USA 1998, 95, 2908–2913, doi:10.1073/pnas.95.6.2908.
[45]  Comas, I.; Borrell, S.; Roetzer, A.; Rose, G.; Malla, B.; Kato-Maeda, M.; Galagan, J.; Niemann, S.; Gagneux, S. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat. Genet. 2012, 44, 106–110.
[46]  Casali, N.; Nikolayevskyy, V.; Balabanova, Y.; Ignatyeva, O.; Kontsevaya, I.; Harris, S.R.; Bentley, S.D.; Parkhill, J.; Nejentsev, S.; Hoffner, S.E.; et al. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res. 2012, 22, 735–745, doi:10.1101/gr.128678.111.
[47]  De Vos, M.; Muller, B.; Borrell, S.; Black, P.; van Helden, P.; Warren, R.; Gagneux, S.; Victor, T. Putative compensatory mutations in the rpoC gene of rifampicin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob. Agents Chemother. 2012, 57, 827–832.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133