全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Animals  2013 

The Future of Pork Production in the World: Towards Sustainable, Welfare-Positive Systems

DOI: 10.3390/ani3020401

Keywords: sustainable, pigs, animal welfare

Full-Text   Cite this paper   Add to My Lib

Abstract:

Among land animals, more pork is eaten in the world than any other meat. The earth holds about one billion pigs who deliver over 100 mmt of pork to people for consumption. Systems of pork production changed from a forest-based to pasture-based to dirt lots and finally into specially-designed buildings. The world pork industry is variable and complex not just in production methods but in economics and cultural value. A systematic analysis of pork industry sustainability was performed. Sustainable production methods are considered at three levels using three examples in this paper: production system, penning system and for a production practice. A sustainability matrix was provided for each example. In a comparison of indoor vs. outdoor systems, the food safety/zoonoses concerns make current outdoor systems unsustainable. The choice of keeping pregnant sows in group pens or individual crates is complex in that the outcome of a sustainability assessment leads to the conclusion that group penning is more sustainable in the EU and certain USA states, but the individual crate is currently more sustainable in other USA states, Asia and Latin America. A comparison of conventional physical castration with immunological castration shows that the less-common immunological castration method is more sustainable (for a number of reasons). This paper provides a method to assess the sustainability of production systems and practices that take into account the best available science, human perception and culture, animal welfare, the environment, food safety, worker health and safety, and economics (including the cost of production and solving world hunger). This tool can be used in countries and regions where the table values of a sustainability matrix change based on local conditions. The sustainability matrix can be used to assess current systems and predict improved systems of the future.

References

[1]  Food Outlook. FAO, 2013. 2013. Available online: http://www.fao.org/docrep/012/ak341e/ak341e09.htm#TopOfPage (accessed on 14 May 2013).
[2]  Aerts, S.; Lips, D.; Spencer, S.; Decuypere, E.; De Tavernier, J. A new framework for the assessment of animal welfare: Integrating existing knowledge from a practical ethics perspective. J. Agr. Environ. Ethics 2006, 19, 67–76, doi:10.1007/s10806-005-4376-y.
[3]  McGlone, J.J. Farm animal welfare in the context of other society issues: Toward sustainable systems. Livest. Prod. Sci. 2001, 72, 75–81, doi:10.1016/S0301-6226(01)00268-8.
[4]  Webster, A. Farm animal welfare: The five freedoms and the free market. Vet. J. 2001, 161, 229–237.
[5]  Bracke, M.; Spruijt, B.; Metz, J.; Schouten, W. Decision support system for overall welfare assessment in pregnant sows A: Model structure and weighting procedure. J. Anim. Sci. 2002, 80, 1819–1834.
[6]  Harrison, R. Animal Machines: The New Factory Farming Industry; Stuart: London, UK, 1964.
[7]  Pig Production: Outdoor Pig Positive. Available online: http://www.youtube.com/watch?v=qobnj4ik1_I (accessed on 14 May 2013).
[8]  Pig Production: Indoor Pig Positive. Available online: http://www.youtube.com/watch?v=IdhnFQzasBk (accessed on 14 May 2013).
[9]  Gentry, J.; McGlone, J.; Blanton, J.; Miller, M. Alternative housing systems for pigs: Influences on growth, composition, and pork quality. J. Anim. Sci. 2002, 80, 1781–1790.
[10]  Gentry, J.; McGlone, J.; Miller, M.; Blanton, J. Diverse birth and rearing environment effects on pig growth and meat quality. J. Anim. Sci. 2002, 80, 1707–1715.
[11]  Edwards, S. Product quality attributes associated with outdoor pig production. Livest. Prod. Sci. 2005, 94, 5–14, doi:10.1016/j.livprodsci.2004.11.028.
[12]  Johnson, A.; Morrow-Tesch, J.; McGlone, J. Behavior and performance of lactating sows and piglets reared indoors or outdoors. J. Anim. Sci. 2001, 79, 2571–2579.
[13]  McGlone, J.J.; Von Borell, E.H.; Deen, J.; Johnson, A.K.; Levis, D.G.; Meunier-Salun, M.; Morrow, J.; Reeves, D.; Salak-Johnson, J.L.; Sundberg, P.L. Compilation of the scientific literature comparing housing systems for gestatin sows and gilts using measures of physiology, behavior, performance and health. Prof. Anim. Sci. 2004, 20, 105–117.
[14]  Dailey, J.W.; McGlone, J.J. Pregnant gilt behavior in indoor and outdoor intensive pork production systems. Appl. Anim. Behav. Sci. 1997, 52, 45–52.
[15]  Dailey, J.W.; McGlone, J.J. Oral/nasal/facial and other behaviors of sows kept individually outdoors on pasture, soil or indoors in gestation crates. Appl. Anim. Behav. Sci. 1997, 52, 25–43, doi:10.1016/S0168-1591(96)01099-4.
[16]  Rachuonyo, H.A.; Pond, W.G.; McGlone, J.J. Effects of stocking rate and crude protein intake during gestation on ground cover, soil-nitrate concentration, and sow and litter performance in an outdoor swine production system. J. Anim. Sci. 2002, 80, 1451–1461.
[17]  Mutai, R.M. Economic feasibility of outdoor weaned pig farming in west Texas. M.S. Thesis; Texas Tech University: Lubbock, TX, USA, 2002. Available online: http://repositories.tdl.org/ttu-ir/bitstream/handle/2346/20800/31295017084483.pdf?sequence=1 (accessed on 14 May 2013).
[18]  Callaway, T.; Morrow, J.; Johnson, A.; Dailey, J.; Wallace, F.; Wagstrom, E.; McGlone, J.; Lewis, A.; Dowd, S.; Poole, T. Environmental prevalence and persistence of Salmonella spp. in outdoor swine wallows. Foodbourne Pathog. Dis. 2005, 2, 263–273, doi:10.1089/fpd.2005.2.263.
[19]  Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee on the European Union Strategy for the Protection and Welfare of Animals 2012–2015. European Commission: Brussels, Belgium, 2012.
[20]  Barnett, J.K.L.; Hemsworth, P.H.; Cronin, G.M.; Jongman, E.C.; Hutson, G.D. A review of the welfare issues for sows and piglets in relation to housing. Aust. J. Agr. Res. 2000, 52, 1–28.
[21]  Rhodes, T.R.; Appleby, M.C.; Chinn, K.; Douglas, L.; Firkins, L.D.; Houpt, K.A.; Irwin, K.; McGlone, J.J.; Sundberg, P.; Tokach, L.; Wills, R.W. A comprehensive review of housing for pregnant sows. J. Am. Vet. Med. Assoc. 2005, 227, 1580–1590.
[22]  McGlone, J.J. Review: Updated scientific evidence on the welfare of gestating sows kept in different housing systems. Prof. Anim. Sci. 2013. in press.
[23]  The Welfare of Intensively Kept Pigs. Report of the Scientific Veterinary Committee; European Commission: Brussels, Belgium, 1997.
[24]  Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching, 3rd ed.; Federation of Animal Science Societies: Champaign, IL, USA, 2010.
[25]  Underwood, W.J. Pain and distress in agricultural animals. J. Am. Vet. Med. Assoc. 2002, 221, 208–211.
[26]  Prunier, A.; Mounier, A.M.; Hay, M. Effects of castration, tooth resection, or tail docking on plasma metabolites and stress hormones in young pigs. J. Anim. Sci. 2005, 83, 216–222.
[27]  White, R.G.; DeShazer, J.A.; Tressler, C.J.; Borcher, G.M.; Davey, S.; Waninge, A.; Parkhurst, A.M.; Milanuk, M.J.; Clemens, E.T. Vocalization and physiological response of pigs during castration with or without a local anesthetic. J. Anim. Sci. 1995, 73, 381–386.
[28]  Patterson, R.L.S. Identification of 3α-hydroxy-5α-androst-16-ene as the musk odour component of the boar submaxillary salivary gland and its relationship to the sex odour taint in pork meat. J. Sci. Food Agr. 1968, 19, 434–438.
[29]  Dunshea, F.R.; Colantoni, C.; Howard, K.; McCauley, I.; Jackson, P.; Long, K.A.; Lopaticki, S.; Nugent, E.A.; Simons, J.A.; Walker, J.; Hennessy, D.P. Vaccination of boars with GnRH vaccine (Improvac) eliminates boar taint and increases growth performance. J. Anim. Sci. 2001, 79, 2524–2535.
[30]  Moraes, P.J.U.D.; Allison, J.; Robinson, J.A.; Baldo, G.L.; Boeri, F.; Borla, P. Life cycle assessment (LCA) and environmental product declaration (EPD) of an immunological product for boar taint control in male pigs. J. Environ. Assess. Policy Manag. 2013, 15, 1–26.
[31]  Sellier, P.; Le Roy, P.; Fouilloux, M.N.; Gruand, J.; Bonneau, M. Responses to restricted index selection and genetic parameters for fat androstenone level and sexual maturity status of young boars. Livestock Prod Sci 2000, 63, 265–274, doi:10.1016/S0301-6226(99)00127-X.
[32]  Merks, J.W.M.; Hanenberg, E.H.A.T.; Bloemhof, S.; Knol, E.F. Genetic opportunities for pork production without castration. Anim. Welf. 2009, 18, 539–544.
[33]  McGlone, J.J.; Hellman, J.M. Local and general anesthetic effects on behavior and performance of 2 and 7 week old castrated and non-castrated piglets. J. Anim. Sci. 1988, 66, 3049–3058.
[34]  Sutherland, M.A.; Davis, B.L.; Brooks, T.A.; Coetzee, J.F. The physiological and behavioral response of pigs castrated with and without anesthesia or analgesia. J. Anim. Sci. 2012, 90, 2211–2221, doi:10.2527/jas.2011-4260.
[35]  Sutherland, M.A.; Davis, B.L.; Brooks, T.A.; McGlone, J.J. Physiology and behavior of pigs before and after castration: effects of two topical anesthetics. Animal 2011, 4, 2071–2079.
[36]  DiPietre, D. Estimating corn savings through the use of immunological castration in male pigs. In Proceedings of the American Association of Swine Veterinarians Annual Meeting, San Diego, CA, USA, 2–5 March 2013.
[37]  Tuyttens, F.A.M.; Vanhonacker, F.; Langendries, K.; Aluwe, M.; Millet, S.; Bakaert, K.; Verbeke, W. Effect of information provisioning on attitude toward surgical castration of male piglets and alternative strategies for avoiding boar taint. Res. Vet. Sci. 2011, 91, 327–332, doi:10.1016/j.rvsc.2011.01.005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133