|
Algorithms 2013
Maximum Locally Stable MatchingsDOI: 10.3390/a6030383 Keywords: stable matchings, hospital/residents problem, social networks Abstract: Motivated by the observation that most companies are more likely to consider job applicants referred by their employees than those who applied on their own, Arcaute and Vassilvitskii modeled a job market that integrates social networks into stable matchings in an interesting way. We call their model HR+SN because an instance of their model is an ordered pair (I, G) where I is a typical instance of the Hospital/Residents problem (HR) and G is a graph that describes the social network (SN) of the residents in I. A matching p, of hospitals and residents has a local blocking pair (h, r) if (h, r) is a blocking pair of ii, and there is a resident r' such that r' is simultaneously an employee of h in the matching and a neighbor of r in G. Such a pair is likely to compromise the matching because the participants have access to each other through r': r can give her resume to r' who can then forward it to h. A locally stable matching is a matching with no local blocking pairs. The cardinality of the locally stable matchings of I can vary. This paper presents a variety of results on computing a locally stable matching with maximum cardinality.
|