全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agriculture  2013 

Italian Wild Rocket [Diplotaxis Tenuifolia (L.) DC.]: Influence of Agricultural Practices on Antioxidant Molecules and on Cytotoxicity and Antiproliferative Effects

DOI: 10.3390/agriculture3020285

Keywords: Italian wild rocket, agricultural practices, antioxidants, cytotoxicity, antiproliferative effects

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wild rocket [ Diplotaxis tenuifolia (L.) DC.] belongs to the Brassicaceae family and has its origin in the Mediterranean region. The effect of conventional and integrated cultivation practices on the nutritional properties and benefits of wild rocket [ Diplotaxis tenuifolia (L.) DC.] were studied. Bioactive molecules content (vitamin C, quercetin, lutein), antioxidant properties and bioactivity of polyphenolic extracts from the edible part of rocket in Caco-2 cells were determined. Regarding antioxidant properties, FRAP (Ferric Reducing Antioxidant Power) values ranged from 4.44 ± 0.11 mmol/kg fw to 9.92 ± 0.46 mmol/kg fw for conventional rocket and from 4.13 ± 0.17 fw mmol/kg to 11.02 ± 0.45 mmol/kg fw for integrated rocket. The characteristics of wild rocket as a dietary source of antioxidants have been pointed out. Significant differences in the quality of conventional and integrated rocket have been shown, while no influence of agronomic practice on biological activity was reported. A significant accumulation of cells in G1 phase and a consequent reduction in the S and G2 + M phases were observed in Caco-2 cells treated with rocket polyphenol extract.

References

[1]  Padulosi, S. Rocket Genetic Resources Network. Report of the First Meeting; International Plant Genetic Resources Institute (IPGRI): Rome, Italy, 1995.
[2]  De Feo, V.; Senatore, F. Medicinal plants and phytotherapy in the Amalfitan coast, Salerno Province, Campania, Southern Italy. J. Ethnopharmacol. 1993, 39, 39–51.
[3]  Bennet, R.N.; Rosa, E.A.S.; Mellon, F.A.; Kroon, P.A. Ontogenic profiling of Glucosinolates, Flavonoids and other secondary metabolites in Eruca Sativa (Salad Ricket), Diplotaxis erucoides (Wall Rocket), Diplotaxis tenuifolia (Wild Rocket), and Bunias orientalis (Turkish Rocket). J. Agric. Food Chem. 2006, 54, 4005–4015.
[4]  Heimler, D.; Isolani, L.; Vignolini, P.; Tombelli, S.; Romani, A. Polyphenol content and antioxidative activity in some species of freshly consumed salads. J. Agric Food Chem. 2007, 55, 1724–1729, doi:10.1021/jf0628983.
[5]  D’Antuono, L.F.; Elementi, S.; Neri, R. Glucosinolates in Diplotaxis and Eruca: Diversity, taxonomic relations and applied aspects. Phytochemistry 2008, 69, 187–199.
[6]  Pasini, F.; Verardo, V.; Caboni, M.F.; D’Antuono, L.F. Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD–MS: Evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chem. 2012, 133, 1025–1033.
[7]  Higdon, J.V.; Delage, B.; Williams, D.E.; Dashwood, R.H. Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacol. Res. 1992, 55, 224–236.
[8]  Lynn, A.; Collins, A.; Fuller, Z.; Hillman, K.; Ratcliffe, B. Cruciferous vegetables and colorectal cancer. P. Nutr. Soc. 2006, 65, 135–144.
[9]  Lamy, E.; Schroder, J.; Paulus, S.; Brenk, P.; Stahl, T.; Mersch-Sundermann, V. Antigenotoxic properties of Eruca sativa (rocket plant), erucin and erysolin in human hepatoma (HepG2) cells towards benzo(a)pyrene and their mode of action. Food Chem. Toxicol. 2008, 46, 2415–2421.
[10]  Alqasoumi, S.; Al-sohaibani, M.; Al-Howiriny, T.; Al-Yahya, M.; Rafatullah, S. Rocket “Eruca sativa”: A salad herb with potential gastric anti-ulcer activity. World. J. Gastroenterol. 2009, 15, 1958–1965.
[11]  Amarowicz, R.; Carle, R.; Dongowski, G.; Durazzo, A.; Galensa, R.; Kammerer, D.; Maiani, G.; Piskula, M.K. Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods. Mol. Nutri. Food Res. 2009, 53, S151–S183.
[12]  Raigon, M.D.; Rodriguez-Burruezo, A.; Prohens, J. Effects of organic and conventional cultivation methods on composition of eggplant fruits. J. Agric. Food Chem. 2010, 58, 6833–6840, doi:10.1021/jf904438n.
[13]  Sansavini, S. Integrated fruit production in Europe: Research and strategies for a sustainable industry. Hort. Sci. 1997, 68, 25–36, doi:10.1016/S0304-4238(96)00926-0.
[14]  Morris, C.; Winter, M. Integrated farming systems: the third way for European agriculture? Land Use Policy 1999, 16, 193–205.
[15]  Hecke, K.; Herbinger, K.; Veberic, R.; Trobec, M.; Toplak, H.; Stampar, F.; Keppel, H.; Grill, D. Sugar-, acid- and phenol contents in apple cultivars from organic and integrated fruit cultivation. Eur. J Clin. Nutr. 2006, 60, 1136–1140.
[16]  Tarozzi, A.; Hrelia, S.; Angeloni, C.; Morroni, F.; Biagi, P.; Guardigli, M.; Cantelli-Forti, G.; Hrelia, P. Antioxidant effectiveness of organically and non-organically grown red oranges in cell culture systems. Eur. J. Nutr. 2006, 45, 152–158.
[17]  Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic compounds in Brassica vegetables. Molecules 2011, 16, 251–280.
[18]  Martinez-Sanchez, A.; Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F. A comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species. J. Agric. Food Chem. 2008, 56, 2330–2340.
[19]  Weckerle, B.; Michel, K.; Balázs, B.; Schreier, P.; Tóth, G. Quercetin 3,3’,4’-tri-O-beta-d-glucopyranosides from leaves of Eruca sativa (Mill.). Phytochemistry 2001, 57, 547–551.
[20]  Martínez-Sanchez, A.; Llorach, R.; Gil, M.I.; Ferreres, F. Identification of new flavonoid glycosides and flavonoid profiles to characterize rocket leafy salads (Eruca vesicaria and Diplotaxis tenuifolia). J. Agric. Food Chem. 2007, 55, 1356–1363, doi:10.1021/jf063474b.
[21]  Kimura, M.; Rodriguez-Amaya, D.B. Carotenoid composition of hydroponic leafy vegetables. J. Agric. Food Chem. 2003, 51, 2603–2607, doi:10.1021/jf020539b.
[22]  Calvo, M.M. Lutein: A valuable ingredient of fruit and vegetables. Crit. Rev. Food Sci. Nutr. 2005, 54, 671–696, doi:10.1080/10408690590957034.
[23]  ?nidar?i?, D.; Ban, D.; ?ircelj, H. Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem. 2009, 129, 1164–1168.
[24]  Dudonne?, S.; Vitrac, X.; Coutie?re, P.; Woillez, M.; Me?rillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 Plant Extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774.
[25]  Soengas, P.; Sotelo, T.; Velasco, P.; Cartea, M.E. Antioxidant properties of Brassica vegetables. Func. Plant Sci. Biotech. Print. 2011, 5, 43–55.
[26]  Degl’Innocenti, E.; Pardossi, A.; Tattini, M.; Guidi, L. Phenolic compounds and antioxidant power in minimally processed salad. J. Food Biochem. 2008, 32, 642–653.
[27]  Jin, J.; Koroleva, O.A.; Gibson, T.; Swanston, J.; Magan, J.; Zhang, Y.; Rowland, I.R.; Wagstaff, C. Analysis of phytochemical composition and chemoprotective capacity of rocket (Eruca sativa and Diplotaxis tenuifolia) leafy salad following cultivation in different environments. J. Agric. Food Chem. 2009, 57, 5227–5234.
[28]  Melchini, A.; Costa, C.; Traka, M.; Miceli, N.; Mithen, R.; De Pasquale, R.; Trovato, A. Erucin, a new promising cancer chemopreventive agent from rocket salads, shows antiproliferative activity on human lung carcinoma A549 cells. Food Chem. Toxicol. 2009, 47, 1430–1436, doi:10.1016/j.fct.2009.03.024.
[29]  D’evoli, L.; Tarozzi, A.; Hrelia, P.; Lucarini, M.; Cocchiola, M.; Gabrielli, P.; Franco, F.; Morroni, F.; Cantelli-forti, G.; Lombardi-Boccia, G. Influence of cultivation system on bioactive molecules synthesis in strawberries: spin-off on antioxidant and antiproliferative activity. J. Food Sci. 2010, 75, C94–C99, doi:10.1111/j.1750-3841.2009.01435.x.
[30]  Im, S.; Yoon, H.; Nam, T.; Heo, H.J.; Lee, C.Y.; Kim, D. Antineurodegenerative effect of phenolic extracts and caffeic acid derivatives in Romaine lettuce on neuron-like PC-12 cells. J. Med. Food 2010, 13, 779–784, doi:10.1089/jmf.2009.1204.
[31]  Hertog, M.G.L.; Hollman, C.H.; Vanema, D.P. Optimization of a qualitative HPLC determination of a potentially anticarcenogenic flavonoids in vegetables and fruits. J. Agric Food Chem. 1992, 40, 1591–1598.
[32]  Azzini, E.; Intorre, F.; Vitaglione, P.; Napolitano, A.; Foddai, M.S.; Durazzo, A.; Fumagalli, A.; Catasta, G.; Rossi, L.; Venneria, E.; Testa, M.F.; Raguzzini, A.; Palomba, L.; Fogliano, V.; Maiani, G. Absorption of strawberry phytochemicals and antioxidant status changes in humans. J. Berry Res. 2010, 1, 81–89.
[33]  Sharpless, K.A.; Arce-Osuna, M.; Thoma, J.B.; Gill, M.L. Value assignment of retinyl palmitate, tocopherol and carotenoid concentrations in standard reference material 2383 (Baby food composite). J. AOAC Int. 1999, 82, 288–296.
[34]  Maiani, G.; Pappalardo, G.; Ferro-Luzzi, A.; Raguzzini, A.; Azzini, A.; Guadalaxara, A.; Trifero, M.; Frommel, T.; Mobarhan, S. Accumulation of beta-carotene in normal colorectal mucosa and colonic neoplastic lesions in humans. Nutr. Cancer 1995, 24, 23–31, doi:10.1080/01635589509514390.
[35]  Margolis, S.A.; Schapira, R. Liquid chromatographic measurement of l-ascorbic acid e d-ascorbic acid in biological samples. J. Chromatogr. B 1997, 690, 25–33, doi:10.1016/S0378-4347(96)00401-X.
[36]  Serafini, M.; Bugianesi, R.; Salucci, M.; Azzini, E.; Raguzzini, A.; Maiani, G. Effect of acute ingestion of fresh and stored lettuce (Lactuca sativa) on plasma total antioxidant capacity and antioxidant levels in human subjects. Br. J. Nutr. 2002, 88, 615–623, doi:10.1079/BJN2002722.
[37]  Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 2003, 133, 2812–2819.
[38]  Benzie, I.F.F; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The assay. Anal. Biochem. 1996, 239, 70–76, doi:10.1006/abio.1996.0292.
[39]  Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402.
[40]  Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. 1983, 65, 55–63.
[41]  Lazzè, M.C.; Pizzala, R.; Savio, M.; Stivala, L.A.; Prosperi, E.; Bianchi, L. Anthocyanins protect against DNA damage induced by tert-butylhydroperoxide in rat smooth muscle and hepatoma cells. Mutat. Res. 2003, 535, 103–115.
[42]  Lazzè, M.C.; Savio, M.; Pizzala, R.; Cazzalini, O.; Perucca, P.; Scovassi, A.I.; Stivala, L.A.; Bianchi, L. Anthocyanins induce cell cycle perturbations and apoptosis in different human cell lines. Carcinogenesis 2004, 25, 1427–1433.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133