全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agriculture  2013 

Integration of Epidemiological Evidence in a Decision Support Model for the Control of Campylobacter in Poultry Production

DOI: 10.3390/agriculture3030516

Keywords: Campylobacter control, epidemiology, poultry, public health, probabilistic graphical models, decision support systems

Full-Text   Cite this paper   Add to My Lib

Abstract:

The control of human Campylobacteriosis is a priority in public health agendas all over the world. Poultry is considered a significant risk factor for human infections with Campylobacter and risk assessment models indicate that the successful implementation of Campylobacter control strategies in poultry will translate on a reduction of human Campylobacteriosis cases. Efficient control strategies implemented during primary production will reduce the risk of Campylobacter introduction in chicken houses and/or decrease Campylobacter concentration in infected chickens and their products. Consequently, poultry producers need to make difficult decisions under conditions of uncertainty regarding the implementation of Campylobacter control strategies. This manuscript presents the development of probabilistic graphical models to support decision making in order to control Campylobacter in poultry. The decision support systems are constructed as probabilistic graphical models (PGMs) which integrate knowledge and use Bayesian methods to deal with uncertainty. This paper presents a specific model designed to integrate epidemiological knowledge from the United Kingdom (UK model) in order to assist poultry managers in specific decisions related to vaccination of commercial broilers for the control of Campylobacter. Epidemiological considerations and other crucial aspects including challenges associated with the quantitative part of the models are discussed in this manuscript. The outcome of the PGMs will depend on the qualitative and quantitative data included in the models. Results from the UK model and sensitivity analyses indicated that the financial variables (cost/reward functions) and the effectiveness of the control strategies considered in the UK model were driving the results. In fact, there were no or only small financial gains when using a hypothetical vaccine B (able to decrease Campylobacter numbers from two to six logs in 20% of the chickens with a cost of 0.025 £/chicken) and reward system 1 (based on similar gross profits in relation to Campylobacter levels) under the specific assumptions considered in the UK model. In contrast, significant reductions in expected Campylobacter numbers and substantial associated expected financial gains were obtained from this model when considering the reward system 2 (based on quite different gross profits in relation to Campylobacter levels) and the use of a hypothetical cost-effective vaccine C (able to reduce the level of Campylobacter from two to six logs in 90% of the chickens with a cost of 0.03 £/chicken). The

References

[1]  Pebody, R.G.; Ryan, M.J.; Wall, P.G. Outbreaks of Campylobacter infection: Rare events for a common pathogen. Commun. Dis. Rep. CDR Rev. 1997, 7, 33–37.
[2]  Neimann, J.; Engberg, J.; Molbak, K.; Wegener, H.C. A case-control study of risk factors for sporadic Campylobacter infections in Denmark. Epidemiol. Infect. 2003, 130, 353–366.
[3]  Bouwknegt, M.; van de Giessen, A.W.; Dam-Deisz, W.D.; Havelaar, A.H.; Nagelkerke, N.J.; Henken, A.M. Risk factors for the presence of Campylobacter spp. in Dutch broiler flocks. Prev. Vet. Med. 2004, 62, 35–49, doi:10.1016/j.prevetmed.2003.09.003.
[4]  Wingstrand, A.; Neimann, J.; Engberg, J.; Nielsen, E.M.; Gerner-Smidt, P.; Wegener, H.C.; M?lbak, K. Fresh chicken as main risk factor for Campylobacteriosis, Denmark. Emerg. Infect. Dis. 2006, 12, 280–285, doi:10.3201/eid1202.050936.
[5]  Arsenault, J.; Letellier, A.; Quessy, S.; Normand, V.; Boulianne, M. Prevalence and risk factors for Salmonella spp. and Campylobacter spp. caecal colonization in broiler chicken and turkey flocks slaughtered in Quebec, Canada. Prev. Vet. Med. 2007, 81, 250–264, doi:10.1016/j.prevetmed.2007.04.016.
[6]  Wilson, D.J.; Gabriel, E.; Leatherbarrow, A.J.; Cheesbrough, J.; Gee, S.; Bolton, E.; Fox, A.; Fearnhead, P.; Hart, C.A.; Diggle, P.J. Tracing the source of Campylobacteriosis. PLoS. Genet. 2008, 4, e1000203, doi:10.1371/journal.pgen.1000203.
[7]  Sheppard, S.K.; Dallas, J.F.; Strachan, N.J.; MacRae, M.; McCarthy, N.D.; Wilson, D.J.; Gormley, F.J.; Falush, D.; Ogden, I.D.; Maiden, M.C.; et al. Campylobacter genotyping to determine the source of human infection. Clin. Infect. Dis. 2009, 48, 1072–1078, doi:10.1086/597402.
[8]  Sears, A.; Baker, M.G.; Wilson, N.; Marshall, J.; Muellner, P.; Campbell, D.M.; Lake, R.J.; French, N.P. Marked Campylobacteriosis decline after interventions aimed at poultry, New Zealand. Emerg. Infect. Dis. 2011, 17, 1007–1015, doi:10.3201/eid1706.101272.
[9]  Ansari-Lari, M.; Hosseinzadeh, S.; Shekarforoush, S.S.; Abdollahi, M.; Berizi, E. Prevalence and risk factors associated with Campylobacter infections in broiler flocks in Shiraz, southern Iran. Int. J. Food. Microbiol. 2011, 144, 475–479, doi:10.1016/j.ijfoodmicro.2010.11.003.
[10]  Reich, F.; Atanassova, V.; Haunhorst, E.; Klein, G. The effects of Campylobacter numbers in caeca on the contamination of broiler carcasses with Campylobacter. Int. J. Food. Microbiol. 2008, 127, 116–120, doi:10.1016/j.ijfoodmicro.2008.06.018.
[11]  Van Deun, K.; Pasmans, F.; Ducatelle, R.; Flahou, B.; Vissenberg, K.; Martel, A.; van den Broeck, W.; van Immerseel, F.; Haesebrouck, F. Colonization strategy of Campylobacter jejuni results in persistent infection of the chicken gut. Vet. Microbiol. 2008, 130, 285–297, doi:10.1016/j.vetmic.2007.11.027.
[12]  Jacobs-Reitsma, W. Aspects of epidemiology of Campylobacter in poultry. Vet. Q. 1997, 19, 113–117, doi:10.1080/01652176.1997.9694753.
[13]  Rosenquist, H.; Sommer, H.; Nielsen, N.; Christensen, B. The effect of slaughter operations on the contamination of chicken carcasses with thermotolerant Campylobacter. Int. J. Food. Microbiol. 2006, 108, 226–232, doi:10.1016/j.ijfoodmicro.2005.12.007.
[14]  Stas, T.; Jordan, F.T.W.; Woldehiwet, Z. Experimental infection of chickens with Campylobacter jejuni: Strains differ in their capacity to colonize the intestine. Avian Pathol. 1999, 28, 61–64, doi:10.1080/03079459995055.
[15]  Sahin, O.; Morishita, T.; Zhang, Q. Campylobacter colonization in poultry: Sources of infection and modes of transmission. Animal Health Res. Rev. 2002, 3, 95–105, doi:10.1079/AHRR200244.
[16]  Lütticken, D.; Segers, R.; Visser, N. Veterinary vaccines for public health and prevention of viral and bacterial zoonotic diseases. Rev. Sci. Tech. 2007, 26, 165–177.
[17]  Black, R.E.; Levine, M.M.; Clements, M.L.; Hughes, T.P.; Blaser, M.J. Experimental Campylobacter jejuni infection in humans. J. Infect Dis. 1988, 157, 472–479, doi:10.1093/infdis/157.3.472.
[18]  Janssen, R.; Krogfelt, K.A.; Cawthraw, S.A.; van Pelt, W.; Wagenaar, J.A.; Owen, R.J. Host-pathogen interactions in Campylobacter infections: The host perspective. Clin. Microbiol. Rev. 2008, 21, 505–518, doi:10.1128/CMR.00055-07.
[19]  The CamVac Project. Campylobacter Vaccination of Poultry. 2012. Available online: http://www.camvac.dk/ (accessed on 21 September 2012).
[20]  Rosenquist, H.; Nielsen, N.L.; Sommer, H.M.; N?rrung, B.; Christensen, B. Quantitative risk assessment of human Campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int. J. Food. Microbiol. 2003, 83, 87–103, doi:10.1016/S0168-1605(02)00317-3.
[21]  Van de Giessen, A.W.; Tilburg, J.J.H.C.; Ritmeester, W.S.; van der Plas, J. Reduction of Campylobacter infections in broiler flocks by application of hygiene measures. Epidemiol. Infect. 1998, 121, 57–66, doi:10.1017/S0950268898008899.
[22]  Evans, S.J.; Sayers, A.R. A longitudinal study of Campylobacter infection of broiler flocks in Great Britain. Prev. Vet. Med. 2000, 46, 209–223, doi:10.1016/S0167-5877(00)00143-4.
[23]  Newell, D.G.; Fearnley, C. Sources of Campylobacter colonization in broiler chickens. Appl. Environ. Microbiol. 2003, 69, 4343–4351, doi:10.1128/AEM.69.8.4343-4351.2003.
[24]  Messens, W.; Hartnett, E.; Gellynck, X.; Viaene, J.; Halet, D.; Herman, L.; Grijspeerdt, K. Quantitative Risk Assessment of Human Campylobacteriosis through the Consumption of Chicken Meat in Belgium. In Proceedings of the XVIII European Symposium on the Quality of Poultry Meat and the XII European Symposium on the Quality of Eggs and Egg products, Ghent University Academy, Prague, Czech Republic, 2–5 September 2007; pp. 167–168.
[25]  Lin, J. Novel approaches for Campylobacter control in poultry. Foodborne Pathog. Dis. 2009, 12, 755–765, doi:10.1089/fpd.2008.0247.
[26]  Hilmarsson, H.; Thormar, H.; Thrainsson, J.H.; Gunnarsson, E.; Dadadottir, S. Effect of 20 glycerol monocaprate (monocaprin) on broiler chickens: An attempt at reducing intestinal Campylobacter infection. Poult. Sci. 2006, 85, 588–592.
[27]  Hermans, D.; Martel, A.; van Deun, K.; Verlinden, M.; van Immerseel, F.; Garmyn, A.; Messens, W.; Heyndrickx, M.; Haesebrouck, F.; Pasmans, F. Intestinal mucus protects Campylobacter jejuni in the ceca of colonized broiler chickens against the bactericidal effects of medium-chain fatty acids. Poult. Sci. 2010, 89, 1144–1155, doi:10.3382/ps.2010-00717.
[28]  El-Shibiny, A.; Scott, A.; Timms, A.; Metawea, Y.; Connerton, P.; Connerton, I. Application of a group II Campylobacter bacteriophage to reduce strains of Campylobacter jejuni and Campylobacter coli colonizing broiler chickens. J. Food Prot. 2009, 72, 733–740.
[29]  Garcia, A.B.; Bahrndorff, S.; Hald, B.; Hoorfar, J.; Madsen, M.; Vigre, H. Design and data analysis of experimental trials to test vaccine candidates against zoonotic pathogens in animals: The case of a clinical trial against Campylobacter in broilers. Expert Rev. Vaccines 2012, 11, 1179–1188, doi:10.1586/erv.12.98.
[30]  Sandberg, M. Personal Communication. Danish Agriculture and Food Council: 2013.
[31]  Greenland, S. Bayesian perspectives for epidemiological research: I. Foundations and basic methods. Int. J. Epidemiol. 2006, 35, 765–775, doi:10.1093/ije/dyi312.
[32]  Roberts, J.A.; Cumberland, P.; Sockett, P.N.; Wheeler, J.G.; Rodrigues, L.C.; Sethi, D.; Roderick, J. The study of infectious intestinal disease in England: Socio-economic impact. Epidemiol. Infect. 2003, 130, 1–11.
[33]  Bronzwaer, S.; Hugas, M.; Collins, J.D.; Newell, D.G.; Robinson, T.; M?kel?, P.; Havelaar, A. EFSA’s 12th Scientific Colloquium—Assessing health benefits of controlling Campylobacter in the food chain. Int. J. Food Microb. 2009, 131, 284–285, doi:10.1016/j.ijfoodmicro.2009.01.033.
[34]  Laboratory Reports of Campylobacter sp in England and Wales 2000–2011. Available online: http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/Campylobacter/EpidemiologicalData/campyDataEw/ (accessed on 20 December 2012).
[35]  Lawes, J.R.; Vidal, A.; Clifton-Hadley, F.A.; Sayers, R.; Rodgers, J.; Snow, L.; Evans, S.J.; Powell, L.F. Investigation of prevalence and risk factors for Campylobacter in broiler flocks at slaughter: Results from a UK survey. Epidemiol. Infect. 2012, 140, 1725–1737, doi:10.1017/S0950268812000982.
[36]  Heckerman, D.; Mamdani, A.; Wellman, M.P. Real-world applications of Bayesian networks. Commun. ACM 1995, 38, 24–68, doi:10.1145/203330.203334.
[37]  Deeks, J.J.; Altman, D.G.; Bradburn, M.J. Statistical Methods for Examining Heterogeneity and Combining Results from Several Studies in Meta-Analysis. In Systematic Reviews in Health Care: Meta-analysis in Context, 2nd ed.; Egger, M., Davey Smith, G., Altman, D.G., Eds.; BMJ Publication Group: London, UK, 2001.
[38]  Deeks, J.J.; Higgins, J.P.T.; Altman, D.G. Chapter 9: Analysing Data and Undertaking Meta-Analyses. Available online: http://hiv.cochrane.org/sites/hiv.cochrane.org/files/uploads/Ch09_Analysing.pdf (accessed on 16 November 2012).
[39]  Howard, R.A.; Matheson, J.E. Influence Diagrams. In Readings in Decision Analysis; Strategic Decisions Group: Menlo Park, CA, USA, 1981; pp. 763–771.
[40]  Annan-Prah, A.; Janc, M. The mode of spread of Campylobacter jejuni/coli to broiler flocks. J. Vet. Med. 1988, 35, 11–18, doi:10.1111/j.1439-0450.1988.tb00461.x.
[41]  Stern, N.J. Reservoirs for C. jejuni and Approaches for Intervention in Poultry. In Campylobacter jejuni: Current Status and Future Trends; Nachamkin, I., Blaser, M.J., Tompkins, L.S., Eds.; American Society for Microbiology: Washington, DC, USA, 1992; pp. 49–60.
[42]  Rice, B.; Rollins, D.; Mallinson, E.; Carr, L.; Joseph, S. Campylobacter jejuni in broiler chickens: Colonization and humoral immunity following oral vaccination and experimental infection. Vaccine 1997, 15, 1922–1932, doi:10.1016/S0264-410X(97)00126-6.
[43]  Food Survey Information Sheet 04/09. A UK Survey of Campylobacter and Salmonella Contamination of Fresh Chicken at Retail Sale. Available online: http://www.food.gov.uk/multimedia/pdfs/fsis0409.pdf (accessed on 3 December 2012).
[44]  Crane, R.; Davenport, R.; Vaughan, R. Farm Business Survey 2009/2010. Poultry Production in England. Available online: http://www.fbspartnership.co.uk/documents/2009_10/PoultryProduction_2009_10.pdf (accessed on 14 January 2012).
[45]  Dianova. Available online: http://www.dianova.dk/ (accessed on 17 June 2013).
[46]  European Food Safety Authority (EFSA). Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses, in the EU, 2008—Part A: Campylobacter and Salmonella prevalence estimates. EFSA J. 2010, 8, 1503–1550, doi:10.2903/j.efsa.2010.1522.
[47]  Allen, V.M.; Bull, S.A.; Corry, J.E.; Domingue, G.; Jorgensen, F.; Frost, J.A.; Whyte, R.; Gonzalez, A.; Elviss, N.; Humphrey, T.J. Campylobacter spp. contamination of chicken carcasses during processing in relation to flock colonisation. Int. J. Food Microb. 2007, 113, 54–61, doi:10.1016/j.ijfoodmicro.2006.07.011.
[48]  Brelade, S.; Harman, C. Practical Guide to Knowledge Management; Thorogood Publishing: London, UK, 2003.
[49]  Firestone, J.; McElroy, M. Has Knowledge Management Been Done; Emerald Group Publishing Limited: Bradford, UK, 2005.
[50]  Madsen, A.L.; Karlsen, M.; Barker, G.C.; Garcia, A.B.; Hoorfar, J.; Jensen, F.; Vigre, H. An Architecture for Web Deployment of Decision Support Systems Based on Probabilistic Graphical Models with Applications. Tech Report TR-12-001; Department of Computer Science, Aalborg University: Aalborg, Denmark, 2012.
[51]  HUGIN EXPERT. The Leading Decision Support Tool. Available online: http://www.hugin.com/ (accessed on 26 September 2012).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133