全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agriculture  2013 

The Potential Impact of Climate Change on Soil Properties and Processes and Corresponding Influence on Food Security

DOI: 10.3390/agriculture3030398

Keywords: climate change, food security, soil properties, soil processes, soil health/quality

Full-Text   Cite this paper   Add to My Lib

Abstract:

According to the IPCC, global temperatures are expected to increase between 1.1 and 6.4 °C during the 21st century and precipitation patterns will be altered. Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Because of this, altered climate will have an effect on soil processes and properties. Recent studies indicate at least some soils may become net sources of atmospheric C, lowering soil organic matter levels. Soil erosion by wind and water is also likely to increase. However, there are many things we need to know more about. How climate change will affect the N cycle and, in turn, how that will affect C storage in soils is a major research need, as is a better understanding of how erosion processes will be influenced by changes in climate. The response of plants to elevated atmospheric CO 2 given limitations in nutrients like N and P, and how that will influence soil organic matter levels, is another critical research need. How soil organic matter levels react to changes in the C and N cycles will influence the ability of soils to support crop growth, which has significant ramifications for food security. Therefore, further study of soil-climate interactions in a changing world is critical to addressing future food security concerns.

References

[1]  IPCC. Summary for Policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 1–18.
[2]  Brevik, E.C. Soils and climate change: Gas fluxes and soil processes. Soil Horiz. 2012, 53, doi:10.2136/sh12-04-0012.
[3]  Pimentel, D. Soil erosion: A food and environmental threat. Environ. Dev. Sustain. 2006, 8, 119–137, doi:10.1007/s10668-005-1262-8.
[4]  Lal, R. Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. BioScience 2010, 60, 708–721, doi:10.1525/bio.2010.60.9.8.
[5]  Blum, W.E.H.; Nortcliff, S. Soils and Food Security. In Soils and Human Health; Brevik, E.C., Burgess, L.C., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 299–321.
[6]  Brevik, E.C. Soils and Human Health—An Overview. In Soils and Human Health; Brevik, E.C., Burgess, L.C., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 29–56.
[7]  Brevik, E.C. Climate Change, Soils, and Human Health. In Soils and Human Health; Brevik, E.C., Burgess, L.C., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 345–383.
[8]  Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 14th ed. ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2008.
[9]  Hansen, J.; Sato, M.; Kharecha, P.; Russell, G.; Lea, D.W.; Siddall, M. Climate change and trace gases. Philos. Trans. R. Soc. A 2007, 365, 1925–1954, doi:10.1098/rsta.2007.2052.
[10]  Pierzynski, G.M.; Sims, J.T.; Vance, G.F. Soils and Environmental Quality, 3rd ed. ed.; CRC Press: Boca Raton, FL, USA, 2009.
[11]  Rustad, L.E.; Huntington, T.G.; Boone, R.D. Controls on soil respiration: Implications for climate change. Biogeochemistry 2000, 48, 1–6, doi:10.1023/A:1006255431298.
[12]  Lal, R.; Kimble, J.; Follett, R.F. Pedospheric Processes and the Carbon Cycle. In Soil Processes and the Carbon Cycle; Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1998; pp. 1–8.
[13]  Mosier, A.R. Soil processes and global change. Biol. Fertil. Soils 1998, 27, 221–229, doi:10.1007/s003740050424.
[14]  Brevik, E.C.; Homburg, J.A. A 5000 year record of carbon sequestration from a coastal lagoon and wetland complex, Southern California, USA. Catena 2004, 57, 221–232, doi:10.1016/j.catena.2003.12.001.
[15]  Schlesinger, W.H. An Overview of the Carbon Cycle. In Soils and Global Change; Lal, R., Kimble, J., Levine, E., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 9–25.
[16]  Post, W.M.; Izaurralde, R.C.; Jastrow, J.D.; McCarl, B.A.; Amonette, J.E.; Bailey, V.L.; Jardine, P.M.; West, T.O.; Zhou, J. Enhancement of carbon sequestration in US soils. BioScience 2004, 54, 895–908, doi:10.1641/0006-3568(2004)054[0895:EOCSIU]2.0.CO;2.
[17]  Lokupitiya, E.; Paustian, K. Agricultural soil greenhouse gas emissions: A review of national inventory methods. J. Environ. Qual. 2006, 35, 1413–1427, doi:10.2134/jeq2005.0157.
[18]  Steinbach, H.S.; Alvarez, R. Changes in soil organic carbon contents and nitrous oxide emissions after introduction of no-till in Pampean agroecosystems. J. Environ. Qual. 2006, 35, 3–13, doi:10.2134/jeq2005.0050.
[19]  Calegari, A.; Hargrove, W.L.; Rheinheimer, D.D.S.; Ralisch, R.; Tessier, D.; de Tourdonnet, S.; de Fatima Guimar?es, M. Impact of long-term no-tillage and cropping system management on soil organic carbon in an Oxisol: A model for sustainability. Agron. J. 2008, 100, 1013–1019, doi:10.2134/agronj2007.0121.
[20]  Hobbs, P.R.; Govaerts, B. How Conservation Agriculturecan Contribute to Buffering Climate Change. In Climate Change and Crop Production; Reynolds, M.P., Ed.; CPI Antony Rowe: Chippenham, UK, 2010; pp. 177–199.
[21]  Bakker, J.M.; Ochsner, T.E.; Venterea, R.T.; Griffis, T.J. Tillage and soil carbon sequestration-What do we really know? Agric. Ecosyst. Environ. 2007, 118, 1–5, doi:10.1016/j.agee.2006.05.014.
[22]  Blanco-Canqui, H.; Lal, R. No-tillage and soil-profile carbon sequestration: An on-farm assessment. Soil Sci. Soc. Am. J. 2008, 72, 693–701, doi:10.2136/sssaj2007.0233.
[23]  Christopher, S.F.; Lal, R.; Mishra, U. Regional study of no-till effects on carbon sequestration in the Midwestern United States. Soil Sci. Soc. Am. J. 2009, 73, 207–216, doi:10.2136/sssaj2007.0336.
[24]  lvaro-Fuentes, J.; Paustian, K. Potential soil carbon sequestration in a semiarid Mediterranean agroecosystem under climate change: Quantifying Management and climate effects. Plant Soil 2011, 338, 261–272, doi:10.1007/s11104-010-0304-7.
[25]  Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Change Biol. 2000, 6, 317–327, doi:10.1046/j.1365-2486.2000.00308.x.
[26]  Silver, W.L.; Osterlag, R.; Lugo, A.E. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor. Ecol. 2000, 8, 394–407, doi:10.1046/j.1526-100x.2000.80054.x.
[27]  Neill, C.; Cern, C.C.; Melillo, J.M.; Feigl, B.J.; Steudler, P.A.; Moraes, J.F.L.; Piccolo, M.C. Stocks and Dynamics of Soil Carbon Following Deforestation for Pasture in Rondonia. In Soil Processes and the Carbon Cycle; Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1998; pp. 9–28.
[28]  Dixon-Coppage, T.L.; Davis, G.L.; Couch, T.; Brevik, E.C.; Barineau, C.I.; Vincent, P.C. A forty-year record of carbon sequestration in an abandoned borrow-pit, Lowndes County, GA. Soil Crop Sci. Soc. Fla. Proc. 2005, 64, 8–15.
[29]  Brevik, E.C. A comparison of soil properties in compacted versus non-compacted Bryant soil series twenty-five years after compaction ceased. Soil Surv. Horiz. 2000, 41, 52–58.
[30]  Brevik, E.C.; Fenton, T.E.; Moran, L. Effect of soil compaction on organic carbon amounts and distribution, South-Central Iowa. Environ. Pollut. 2002, 116, S137–S141, doi:10.1016/S0269-7491(01)00266-4.
[31]  Martikainen, P.J.; Regina, K.; Syv?salo, E.; Laurila, T.; Lohila, A.; Aurela, M.; Silvola, J.; Kettunen, R.; Saarnio, S.; Koponen, H.; et al. Agricultural Soils as a Sink and Source of Greenhouse Gases: A Research Consortium (AGROGAS). In Understanding the Global System, the Finnish Perspective; K?yhk?, J., Talve, L., Eds.; Finnish Global Change Research Programme FIGARE: Turku, Finland, 2002; pp. 55–68.
[32]  Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Agriculture. In Climate change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 497–540.
[33]  Heilig, G.K. The greenhouse gas methane (CH4): Sources and sinks, the impact of population growth, possible interventions. Popul. Environ. 1994, 16, 109–137, doi:10.1007/BF02208779.
[34]  Stepniewski, W.; Stepniewski, Z.; Ro?ej, A. Gas Exchange in Soils. In Soil Management: Building a Stable Base for Agriculture; Hatfield, J.L., Sauer, T.J., Eds.; Soil Science Society of America: Madison, WI, USA, 2011; pp. 117–144.
[35]  Hu, R.; Kusa, K.; Hatano, R. Soil respiration and methane flux in adjacent forest, grassland, and cornfield soils in Hokkaido, Japan. Soil Sci. Plant Nutr. 2001, 47, 621–627, doi:10.1080/00380768.2001.10408425.
[36]  Neue, H.-U. Agronomic practices affecting methane fluxes from rice cultivation. Ecol. Bull. 1992, 42, 174–182.
[37]  Wassmann, R.; Schütz, H.; Papen, H.; Rennenberg, H.; Seiler, W.; Aiguo, D.; Renxing, S.; Xingjian, S.; Mingxing, W. Quantification of methane emissions from Chinese rice fields (Zhejiang Province) as influenced by fertilizer treatment. Biogeochemistry 1993, 20, 83–101, doi:10.1007/BF00004136.
[38]  Lu, Y.; Wassmann, R.; Neue, H.-U.; Huang, C. Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants. Biogeochemistry 1999, 47, 203–218.
[39]  Zhang, J.-E.; Ouyang, Y.; Huang, Z.-X.; Quan, G.-M. Dynamic emission of CH4 from a rice-duck farming ecosystem. J. Environ. Prot. 2011, 2, 537–544, doi:10.4236/jep.2011.25062.
[40]  Mullen, R.W. Nutrient Cycling in Soils: Nitrogen. In Soil Management: Building a Stable Base for Agriculture; Hatfield, J.L., Sauer, T.J., Eds.; Soil Science Society of America: Madison, WI, USA, 2011; pp. 67–78.
[41]  Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 129–234.
[42]  Grant, R.F.; Pattey, E.; Goddard, T.W.; Kryzanowski, L.M.; Puurveen, H. Modeling the effects of fertilizer application rate on nitrous oxide emissions. Soil Sci. Soc. Am. J. 2006, 70, 235–248, doi:10.2136/sssaj2005.0104.
[43]  Wagner-Riddle, C.; Weersink, A. Net Agricultural Greenhouse Gases: Mitigation Strategies and Implications. In Sustaining Soil Productivity in Response to Global Climate Change: Science, Policy, and Ethics; Sauer, T.J., Norman, J.M., Sivakumar, M.V.K., Eds.; John Wiley & Sons, Inc.: Oxford, UK, 2011; pp. 169–182.
[44]  Grandy, A.S.; Loecke, T.D.; Parr, S.; Robertson, G.P. Long-term trends in nitrous oxide emissions, soil nitrogen, and crop yields Of till and no-till cropping systems. J. Environ. Qual. 2006, 35, 1487–1495, doi:10.2134/jeq2005.0166.
[45]  Melillo, J.M.; Steudler, P.A.; Feigl, B.J.; Neill, C.; Garcia, D.; Piccolo, M.C.; Cerri, C.C.; Tian, H. Nitrous oxide emissions from forests and pastures of various ages in the Brazilian Amazon. J. Geophys. Res. 2001, 106 (D24), 34179–34188.
[46]  Hall, S.J.; Asner, G.P.; Kitayama, K. Substrate, climate, and land use controls over soil N dynamics and N-oxide emissions in Borneo. Biogeochemistry 2004, 70, 27–58, doi:10.1023/B:BIOG.0000049335.68897.87.
[47]  Brevik, E.C. Soil Health and Productivity. In Soils, Plant Growth and Crop Production; Verheye, W., Ed.; Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, EOLSS Publishers: Oxford, UK, 2009.
[48]  Brevik, E.C. An Introduction to Soil Science Basics. In Soils and Human Health; Brevik, E.C., Burgess, L.C., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 3–28.
[49]  Coughenour, M.B.; Chen, D.-X. Assessment of grassland ecosystem responses to atmospheric change using linked plant-soil process models. Ecol. Appl. 1997, 7, 802–827.
[50]  H?ttenschwiler, S.; Handa, I.T.; Egli, L.; Asshoff, R.; Ammann, W.; K?rner, C. Atmospheric CO2 enrichment of alpine treeline conifers. New Phytol. 2002, 156, 363–375, doi:10.1046/j.1469-8137.2002.00537.x.
[51]  Poorter, H.; Navas, M.-L. Plant growth and competition at elevated CO2: On winners, losers and functional groups. New Phytol. 2003, 157, 175–198, doi:10.1046/j.1469-8137.2003.00680.x.
[52]  Zavaleta, E.S.; Shaw, M.R.; Chiariello, N.R.; Thomas, B.D.; Cleland, E.E.; Field, C.B.; Mooney, H.A. Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol. Monogr. 2003, 73, 585–604, doi:10.1890/02-4053.
[53]  Long, S.P.; Ainsworth, E.A.; Leakey, A.D.B.; Morgan, P.B. Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philos. Trans. R. Soc. B 2005, 360, 2011–2020, doi:10.1098/rstb.2005.1749.
[54]  K?rner, C. Plant CO2 responses: An issue of definition, time and resource supply. New Phytol. 2006, 172, 393–411, doi:10.1111/j.1469-8137.2006.01886.x.
[55]  Jarvis, A.; Ramirez, J.; Anderson, B.; Leibing, C.; Aggarwal, P. Scenarios of Climate Change Within the Context of Agriculture. In Climate Change and Crop Production; Reynolds, M.P., Ed.; CPI Antony Rowe: Chippenham, UK, 2010; pp. 9–37.
[56]  Zaehle, S.; Friedlingstein, P.; Friend, A.D. Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys. Res. Lett. 2010, 37, L01401, doi:10.1029/2009GL041345.
[57]  Hungate, B.A.; Dukes, J.S.; Shaw, M.R.; Luo, Y.; Field, C.B. Nitrogen and climate change. Science 2003, 302, 1512–1513, doi:10.1126/science.1091390.
[58]  Niklaus, P.A.; K?rner, C. Synthesis of a six-year study of calcareous grassland responses to in situ CO2 enrichment. Ecol. Monogr. 2004, 74, 491–511, doi:10.1890/03-4047.
[59]  Kirkham, M.B. Elevated Carbon Dioxide; CRC Press: Boca Raton, FL, USA, 2011.
[60]  Carney, K.M.; Hungate, B.A.; Drake, B.G.; Megonigal, J.P. Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc. Natl. Acad. Sci. USA 2007, 104, 4990–4995.
[61]  Eglin, T.; Ciasis, P.; Piao, S.L.; Barré, P.; Belassen, V.; Cadule, P.; Chenu, C.; Gasser, T.; Reichstein, M.; Smith, P. Overview on Response of Global Soil Carbon Pools to Climate and Land-Use Changes. In Sustaining Soil Productivity in Response to Global Climate Change: Science, Policy, and Ethics; Sauer, T.J., Norman, J.M., Sivakumar, M.V.K., Eds.; John Wiley & Sons, Inc.: Oxford, UK, 2011; pp. 183–199.
[62]  Gorissen, A.; Tietema, A.; Joosten, N.N.; Estiarte, M.; Pe?uelas, J.; Sowerby, A.; Emmett, B.A.; Beier, C. Climate change affects carbon allocation to the soil in shrublands. Ecosystems 2004, 7, 650–661.
[63]  Wan, Y.; Lin, E.; Xiong, W.; Li, Y.; Guo, L. Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China. Agric. Ecosyst. Environ. 2011, 141, 23–31, doi:10.1016/j.agee.2011.02.004.
[64]  Link, S.O.; Smith, J.L.; Halverson, J.J.; Bolton, H., Jr. A reciprocal transplant experiment within a climatic gradient in a semiarid shrub-steppe ecosystem: Effects on bunchgrass growth and reproduction, soil carbon, and soil nitrogen. Glob. Change Biol. 2003, 9, 1097–1105, doi:10.1046/j.1365-2486.2003.00647.x.
[65]  Price, D.T.; Peng, C.H.; Apps, M.J.; Halliwell, D.H. Simulating effects of climate change on boreal ecosystem carbon pools in central Canada. J. Biogeogr. 1999, 26, 1237–1248, doi:10.1046/j.1365-2699.1999.00332.x.
[66]  Grace, P.R.; Colunga-Garcia, M.; Gage, S.H.; Robertson, G.P.; Safir, G.R. The potential impact of agricultural management and climate change on soil organic carbon of the north central region of the United States. Ecosystems 2006, 9, 816–827, doi:10.1007/s10021-004-0096-9.
[67]  Niklińska, M.; Maryański, M.; Laskowski, R. Effect of temperature on humus respiration rate and nitrogen mineralization: Implications for global climate change. Biogeochemistry 1999, 44, 239–257.
[68]  Gill, R.A.; Polley, H.W.; Johnson, H.B.; Anderson, L.J.; Maherali, H.; Jackson, R.B. Nonlinear grassland responses to past and future atmospheric CO2. Nature 2002, 417, 279–282, doi:10.1038/417279a.
[69]  Reich, P.B.; Hobbie, S.E.; Lee, T.; Ellsworth, D.S.; West, J.B.; Tilman, D.; Knops, J.M.; Naeem, S.; Trost, J. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 2006, 440, 922–925, doi:10.1038/nature04486.
[70]  Holland, E.A. The Role of Soils and Biogeochemistry in the Climate and Earth System. In Sustaining Soil Productivity in Response to Global Climate Change: Science, Policy, and Ethics; Sauer, T.J., Norman, J.M., Sivakumar, M.V.K., Eds.; John Wiley & Sons, Inc.: Oxford, UK, 2011; pp. 155–168.
[71]  Norby, R.J.; Luo, Y. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol. 2004, 162, 281–293, doi:10.1111/j.1469-8137.2004.01047.x.
[72]  Joshi, A.B.; Vann, D.R.; Johnson, A.H. Litter quality and climate decouple nitrogen mineralization and productivity in Chilean temperate rainforests. Soil Sci. Soc. Am. J. 2005, 70, 153–162, doi:10.2136/sssaj2004.0173.
[73]  Reich, P.B.; Hungate, B.A.; Luo, Y. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 611–636, doi:10.1146/annurev.ecolsys.37.091305.110039.
[74]  An, Y.; Wan, S.; Zhou, X.; Subedar, A.A.; Wallace, L.A.; Luo, Y. Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming. Glob. Change Biol. 2005, 11, 1733–1744, doi:10.1111/j.1365-2486.2005.01030.x.
[75]  Zhang, X.C.; Nearing, M.A.; Garbrecht, J.D.; Steiner, J.L. Downscaling monthly forecasts to simulate impacts of climate change on soil erosion and wheat production. Soil Sci. Soc. Am. J. 2004, 68, 1376–1385, doi:10.2136/sssaj2004.1376.
[76]  Ravi, S.; Breshears, D.D.; Huxman, T.E.; D’Odorico, P. Land degradation in drylands: interactions among hydraulic-aeolian erosion and vegetation dynamics. Geomorphology 2010, 116, 236–245, doi:10.1016/j.geomorph.2009.11.023.
[77]  Sivakumar, M.V.K. Climate and Land Degradation. In Sustaining Soil Productivity in Response to Global Climate Change: Science, Policy, and Ethics; Sauer, T.J., Norman, J.M., Sivakumar, M.V.K., Eds.; John Wiley & Sons, Inc.: Oxford, UK, 2011; pp. 141–154.
[78]  Chiew, F.H.S.; Whetton, P.H.; McMahon, T.A.; Pittock, A.B. Simulation of the impacts of climate change on runoff and soil moisture in Australian catchments. J. Hydrol. 1995, 167, 121–147, doi:10.1016/0022-1694(94)02649-V.
[79]  Favis-Mortlock, D.; Boardman, J. Nonlinear responses of soil erosion to climate change: A modeling study on the UK South Downs. Catena 1995, 25, 365–387, doi:10.1016/0341-8162(95)00018-N.
[80]  Li, Z.; Lui, W.-Z.; Zhang, X.-C.; Zheng, F.-L. Assessing the site-specific impacts of climate change on hydrology, soil erosion, and crop yields in the Loess Plateau of China. Clim. Change 2011, 105, 223–242, doi:10.1007/s10584-010-9875-9.
[81]  FAO. Trade Reforms and Food Security: Conceptualizing the Linkages; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003.
[82]  Brevik, E.C. Soil, Food Security, and Human Health. Soils, Plant Growth and Crop Production; Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, EOLSS Publishers: Oxford, UK, 2009. Available online: http://www.eolss.net (accessed on 10 May 2013).
[83]  Allan, J.D.; Abell, R.; Hogan, Z.; Revenga, C.; Taylor, B.W.; Welcomme, R.L.; Winemiller, K. Overfishing of inland waters. BioScience 2005, 55, 1041–1051, doi:10.1641/0006-3568(2005)055[1041:OOIW]2.0.CO;2.
[84]  Jackson, J.B.C.; Kirby, M.X.; Berger, W.H.; Bjorndal, K.A. Botsford, L.W.; Bourque, B.J.; Bradbury, R.H.; Cooke, R.; Erlandson, J.; Estes, J.A.; et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 2001, 293, 629–638, doi:10.1126/science.1059199.
[85]  Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, A.T.; Gregory, J.M.; Kitoh, A.; Knutti, R.; Murphy, J.M.; Noda, A.; et al. Global Climate Projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 747–845.
[86]  Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Tank, A.K.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and Atmospheric Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 235–336.
[87]  Sauer, T.J.; Nelson, M.P. Science, Ethics, and the Historical Roots of Our Ecological Crisis. Was White Right? In Sustaining Soil Productivity in Response to Global Climate Change: Science, Policy, and Ethics; Sauer, T.J., Norman, J.M., Sivakumar, M.V.K., Eds.; John Wiley & Sons, Inc.: Oxford, UK, 2011; pp. 3–16.
[88]  Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity, and food security—A review. Prog. Nat. Sci. 2009, 19, 1665–1674, doi:10.1016/j.pnsc.2009.08.001.
[89]  Park, S.E.; Howden, S.M.; Crimp, S.J.; Gaydon, D.S.; Attwood, S.J.; Kokic, P.N. More than eco-efficiency is required to improve food security. Crop Sci. 2009, 50, S132–S141.
[90]  Funk, C.; Dettinger, M.D.; Michaelsen, J.C.; Verdin, J.P.; Brown, M.E.; Barlow, M.; Hoell, A. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Natl. Acad. Sci. USA 2008, 105, 11081–11086.
[91]  Paeth, H.; Capo-Chichi, A.; Endlicher, W. Climate change and food security in tropical West Africa—A dynamic-statistical modeling approach. Erdkunde 2008, 62, 101–115, doi:10.3112/erdkunde.2008.02.01.
[92]  Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708, doi:10.1073/pnas.0701976104.
[93]  Fischer, G.; Shah, M.; Tubiello, F.N.; van Velhuizen, H. Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Philos. Trans. R. Soc. B 2005, 360, 2067–2083.
[94]  Gregory, P.J.; Ingram, J.S.I.; Brklacich, M. Climate change and food security. Philos. Trans. R. Soc. B 2005, 360, 2139–2148, doi:10.1098/rstb.2005.1745.
[95]  Parry, M.; Rosenzweig, C.; Livermore, M. Climate change, global food supply, and risk of hunger. Philos. Trans. R. Soc. B 2005, 360, 2125–2138, doi:10.1098/rstb.2005.1751.
[96]  Rosegrant, M.W.; Cline, S.A. Global food security: Challenges and policies. Science 2003, 302, 1917–1919, doi:10.1126/science.1092958.
[97]  Poudel, D.D.; Midmore, D.J.; West, L.T. Erosion and productivity of vegetable systems on sloping volcanic ash-derived Philippine soils. Soil Sci. Soc. Am. J. 1999, 63, 1366–1376, doi:10.2136/sssaj1999.6351366x.
[98]  Sparovek, G.; Schnug, E. Temporal erosion-induced soil degradation and yield loss. Soil Sci. Soc. Am. J. 2001, 65, 1479–1486, doi:10.2136/sssaj2001.6551479x.
[99]  García-Fayos, P.; Bochet, E. Indication of antagonistic interaction between climate change and erosion on plant species richness and soil properties in semiarid Mediterranean ecosystems. Glob. Change Biol. 2009, 15, 306–318, doi:10.1111/j.1365-2486.2008.01738.x.
[100]  Lele, U. Food security for a billion poor. Science 2010, 326, 1554, doi:10.1126/science.1189247.
[101]  St. Clair, S.B.; Lynch, J.P. The opening of Pandora’s Box: Climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 2010, 335, 101–115, doi:10.1007/s11104-010-0328-z.
[102]  Easterling, W.E.; Aggarwal, P.K.; Batima, P.; Brander, K.M.; Erda, L.; Howden, S.M.; Kirilenko, A.; Morton, J.; Soussana, J.-F.; Schmidhuber, J.; et al. Food, Fibre and Forest Products. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 273–313.
[103]  Olesen, J.E.; Bindi, M. Consequences of climate change for European agricultural productivity, land use, and policy. Eur. J. Agron. 2002, 16, 239–262, doi:10.1016/S1161-0301(02)00004-7.
[104]  Rosenzweig, C.; Parry, M. Potential impact of climate change on world food supply. Nature 1994, 367, 133–138, doi:10.1038/367133a0.
[105]  Sanchez, P.A.; Swaminathan, M.S. Hunger in Africa: The link between unhealthy people and unhealthy soils. Lancet 2005, 365, 442–444.
[106]  Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627, doi:10.1126/science.1097396.
[107]  Huntingford, C.; Lambert, F.H.; Gash, J.H.C.; Taylor, C.M.; Challinor, A.J. Aspects of climate change prediction relevant to crop productivity. Philos. Trans. R. Soc. B 2005, 360, 1999–2009, doi:10.1098/rstb.2005.1748.
[108]  Tan, Z.; Tieszen, L.L.; Liu, S.; Tachie-Obeng, E. Modeling to evaluate the response of savanna-derived cropland to warming-drying stress and nitrogen fertilizers. Clim. Change 2010, 100, 703–715, doi:10.1007/s10584-009-9688-x.
[109]  Pimentel, D.; Cooperstein, S.; Randell, H.; Filiberto, D.; Sorrentino, S.; Kaye, B.; Nicklin, C.; Yagi, J.; Brian, J.; O’Hern, J.; et al. Ecology of increasing diseases: Population growth and environmental degradation. Hum. Ecol. 2007, 35, 653–668, doi:10.1007/s10745-007-9128-3.
[110]  Li, Z.; Tang, S.; Deng, X.; Wang, R.; Song, Z. Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contrasting soils with two levels of metals: Implication for phytoextraction and food security. J. Hazard. Mater. 2010, 177, 352–361, doi:10.1016/j.jhazmat.2009.12.039.
[111]  Wu, H.B.; Tang, S.R.; Zhang, X.M.; Guo, J.K.; Song, Z.G.; Tian, S.; Smith, D. Using elevated CO2 to increase the biomass of a Sorghum vulgare × Sorghum vulgare var. sudanense hybrid and Trifolium pretense L. and to trigger hyperaccumulation of cesium. J. Hazard. Mater. 2009, 170, 861–870, doi:10.1016/j.jhazmat.2009.05.069.
[112]  Tang, S.R.; Xi, L.; Zhang, X.M.; Li, H.Y. Response to elevated CO2 of Indian mustard and sunflower growing on copper contaminated soil. Bull. Environ. Contam. Toxicol. 2003, 71, 988–997, doi:10.1007/s00128-003-0224-9.
[113]  Brevik, E.C.; Burgess, L.C. The 2012 fungal meningitis outbreak in the United States: Connections between soils and human health. Soil Horiz. 2013, 54, doi:10.2136/sh12-11-0030.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133