Development of Recombinant Flagellar Antigens for Serological Detection of Salmonella enterica Serotypes Enteritidis, Hadar, Heidelberg, and Typhimurium in Poultry
Accurate and fast detection of harmful Salmonella is a major concern of food safety. Common Salmonella serotypes responsible for human associated foodborne outbreaks are S. Enteritidis, S. Hadar, S. Heidelberg, and S. Typhimurium are also commonly isolated from poultry. Serology is commonly used to monitor disease in poultry, therefore application of Salmonella serotype-specific test will have added value in Salmonella surveillance or monitoring vaccine efficacy. Recombinant flagellins were purified to be used as antigens in an ELISA. In this study, an ELISA was developed for the serological detection of S. Enteritidis. Once optimized, 500 ng of purified recombinant S. Enteritidis flagellin and a 1:64 dilution were determined to be optimal for testing sera. A negative baseline cutoff was calculated to be an optical density (OD) of 0.35. All sera from birds with history of S. Enteritidis exposure tested positive and all sera from chickens with no exposure tested negative to this Salmonella serotype. Current ELISA for serological detection of Salmonella suffers from cross reactivity inherent in lipopolysaccharide (LPS) or whole cell antigen based serological tests. This new ELISA eliminates common cross reactivity by focusing specifically on the flagellins of the Salmonella serotypes common in poultry and associated with foodborne outbreaks.
References
[1]
Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the united states—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15.
[2]
Batz, M.B.; Hoffmann, S.; Morris, J.G., Jr. Ranking the disease burden of 14 pathogens in food sources in the united states using attribution data from outbreak investigations and expert elicitation. J. Food Prot. 2012, 75, 1278–1291, doi:10.4315/0362-028X.JFP-11-418.
[3]
Pathogen reduction; hazard analysis and critical control point (haccp) systems; final rule. Fed. Regist. 1996, 61, 38805–38989.
[4]
Fsis notice 54-12: Performance standards for Salmonella and Campylobacter in chilled carcasses at young chicken and turkey slaughter establishments. USDA Food Safety and Inspection Service. 2012. Available online: http://www.fsis.usda.gov/OPPDE/rdad/FSISNotices/54-12.pdf (accessed on 4 April 2013).
[5]
Dorea, F.C.; Cole, D.J.; Hofacre, C.; Zamperini, K.; Mathis, D.; Doyle, M.P.; Lee, M.D.; Maurer, J.J. Effect of Salmonella vaccination of breeder chickens on contamination of broiler chicken carcasses in integrated poultry operations. Appl. Environ. Microbiol. 2010, 76, 7820–7825, doi:10.1128/AEM.01320-10.
[6]
Berghaus, R.D.; Thayer, S.G.; Maurer, J.J.; Hofacre, C.L. Effect of vaccinating breeder chickens with a killed Salmonella vaccine on Salmonella prevalences and loads in breeder and broiler chicken flocks. J. Food Prot. 2011, 74, 727–734, doi:10.4315/0362-028X.JFP-10-542.
[7]
Toyota-Hanatani, Y.; Ekawa, T.; Ohta, H.; Igimi, S.; Hara-Kudo, Y.; Sasai, K.; Baba, E. Public health assessment of Salmonella enterica serovar Enteritidis inactivated-vaccine treatment in layer flocks. Appl. Environ. Microbiol. 2009, 75, 1005–1010, doi:10.1128/AEM.01689-08.
[8]
National poultry improvement plan and auxiliary provisions. Fed. Regist. 2000, 65, 8014–8023.
[9]
Popoff, M.Y.; Bockemuhl, J.; Gheesling, L.L. Supplement 2001 (no. 45) to the kauffmann-white scheme. Res. Microbiol. 2003, 154, 173–174, doi:10.1016/S0923-2508(03)00025-1.
[10]
Salmonella annual summary 2009. Centers for Disease Control and Prevention; National Salmonella Surveillance Data. 2009. Available online: http://www.cdc.gov/ncezid/PDFs/SalmonellaAnnualSummaryTables2009.pdf (accessed on 25 March 2013).
[11]
Serotypes profile of Salmonella isolates from meat and poultry products: January 1998 through december 2010. USDA Food Safety and Inspection Service. 2010. Available online: http://www.fsis.usda.gov/PDF/Serotypes_Profile_Salmonella_2010.pdf (accessed on 25 March 2013).
[12]
Fsis notice 22-13: Historical Salmonella serotype information letters for establishments producing ground chicken and ground turkey. USDA Food Safety and Inspection Service. 2013. Available online: http://www.fsis.usda.gov/OPPDE/rdad/FSISNotices/22-13.pdf (accessed on 4 April 2013).
[13]
CDC. Salmonella-serotype of isolate by year, United States, 1973–1998. Morbid. Mortal. Wkly. Rep. 1999, 47, 60.
[14]
Lin, F.Y.; Morris, J.G., Jr.; Trump, D.; Tilghman, D.; Wood, P.K.; Jackman, N.; Israel, E.; Libonati, J.P. Investigation of an outbreak of Salmonella Enteritidis gastroenteritis associated with consumption of eggs in a restaurant chain in maryland. Am. J. Epidemiol. 1988, 128, 839–844.
[15]
Ebel, E.D.; David, M.J.; Mason, J. Occurrence of Salmonella Enteritidis in the U.S. Commercial egg industry: Report on a national spent hen survey. Avian Dis. 1992, 36, 646–654, doi:10.2307/1591760.
[16]
Blivet, D.; Salvat, G.; Humbert, F.; Colin, P. Evaluation of a new enrichment broth for the isolation of Salmonella spp. from poultry products. Int. J. Food Microbiol. 1997, 38, 211–216, doi:10.1016/S0168-1605(97)00106-2.
[17]
D’Aoust, J.Y.; Sewell, A.M.; Warburton, D.W. A comparison of standard cultural methods for the detection of foodborne Salmonella. Int. J. Food Microbiol. 1992, 16, 41–50, doi:10.1016/0168-1605(92)90124-L.
[18]
Hajna, A.A.; Damon, S.R. New enrichment and plating media for the isolation of Salmonella and Shigella organisms. Appl. Microbiol. 1956, 4, 341–345.
[19]
Miller, R.G.; Tate, C.R.; Mallinson, E.T.; Scherrer, J.A. Xylose-lysine-tergitol 4: An improved selective agar medium for the isolation of Salmonella. Poult. Sci. 1991, 70, 2429–2432, doi:10.3382/ps.0702429.
[20]
Liu, T.; Liljebjelke, K.; Bartlett, E.; Hofacre, C.; Sanchez, S.; Maurer, J.J. Application of nested polymerase chain reaction to detection of Salmonella in poultry environment. J. Food Prot. 2002, 65, 1227–1232.
[21]
Hong, Y.; Liu, T.; Hofacre, C.; Maier, M.; White, D.; Ayers, S.; Wang, L.; Maurer, J. A restriction fragment length polymorphism-based polymerase chain reaction as analternative to serotyping for identifying Salmonella serotypes. Avian Dis. 2003, 47, 387–395, doi:10.1637/0005-2086(2003)047[0387:ARFLPP]2.0.CO;2.
[22]
Thorns, C.J.; McLaren, I.M.; Sojka, M.G. The use of latex particle agglutination to specifically detect Salmonella Enteritidis. Int. J. Food Microbiol. 1994, 21, 47–53, doi:10.1016/0168-1605(94)90199-6.
[23]
Davies, R.H.; Nicholas, R.A.; McLaren, I.M.; Corkish, J.D.; Lanning, D.G.; Wray, C. Bacteriological and serological investigation of persistent Salmonella Enteritidis infection in an integrated poultry organisation. Vet. Microbiol. 1997, 58, 277–293, doi:10.1016/S0378-1135(97)00157-0.
[24]
Gast, R.K.; Porter, R.E., Jr.; Hold, P.S. Applying tests for specific yolk antibodies to predict contamination by Salmonella Enteritidis in eggs from experimentally infected laying hens. Avian Dis. 1997, 41, 195–202, doi:10.2307/1592460.
[25]
Harvey, R.W.; Price, T.H. A comparison of two modifications of rappaport’s enrichment medium (r25 and rv) for the isolation of salmonellas from sewage polluted natural water. J. Hyg. Lond. 1983, 91, 451–458, doi:10.1017/S0022172400060496.
[26]
Osborne, W.W.; Stokes, J.L. A modified selenite brilliant-green medium for the isolation of Salmonella from egg products. Appl. Microbiol. 1955, 3, 295–299.
[27]
Baylis, C.L.; MacPhee, S.; Betts, R.P. Comparison of two commercial preparations of buffered peptone water for the recovery and growth of Salmonella bacteria from foods. J. Appl. Microbiol. 2000, 89, 501–510, doi:10.1046/j.1365-2672.2000.01145.x.
[28]
Pourciau, S.S.; Springer, W.T. Evaluation of secondary enrichment for detecting salmonellae in bobwhite quail. Avian Dis. 1978, 22, 42–45, doi:10.2307/1589505.
[29]
Rigby, C.E.; Pettit, J.R.; Bentley, A.H.; Spencer, J.L.; Salomons, M.O.; Lior, H. The relationships of salmonellae from infected broiler flocks, transport crates or processing plants to contamination of eviscerated carcases. Can. J. Comp. Med. 1982, 46, 272–278.
[30]
Waltman, W.D.; Horne, A.M.; Pirkle, C. Influence of enrichment incubation time on the isolation of Salmonella. Avian Dis. 1993, 37, 884–887, doi:10.2307/1592046.
Nicholas, R.A. Serological response of chickens naturally infected with Salmonella Typhimurium detected by elisa. Br. Vet. J. 1992, 148, 241–248, doi:10.1016/0007-1935(92)90047-5.
[33]
Edel, W. Salmonella Enteritidis eradication programme in poultry breeder flocks in the netherlands. Int. J. Food Microbiol. 1994, 21, 171–178, doi:10.1016/0168-1605(94)90209-7.
[34]
Veling, J.; van Zijderveld, F.G.; van Zijderveld-van Bemmel, A.M.; Barkema, H.W.; Schukken, Y.H. Evaluation of three newly developed enzyme-linked immunosorbent assays and two agglutination tests for detecting Salmonella enterica subsp. enterica serovar dublin infections in dairy cattle. J. Clin. Microbiol. 2000, 38, 4402–4407.
[35]
Nicholas, R.A.; Cullen, G.A. Development and application of an elisa for detecting antibodies to Salmonella Enteritidis in chicken flocks. Vet. Rec. 1991, 128, 74–76.
[36]
Barrow, P.A. Serological diagnosis of Salmonella serotype Enteritidis infections in poultry by elisa and other tests. Int. J. Food Microbiol. 1994, 21, 55–68, doi:10.1016/0168-1605(94)90200-3.
[37]
Barrow, P.A. Further observations on the serological response to experimental Salmonella Typhimurium in chickens measured by elisa. Epidemiol. Infect. 1992, 108, 231–241, doi:10.1017/S0950268800049712.
[38]
Desmidt, M.; Ducatelle, R.; Haesebrouck, F.; de Groot, P.A.; Verlinden, M.; Wijffels, R.; Hinton, M.; Bale, J.A.; Allen, V.M. Detection of antibodies to Salmonella Enteritidis in sera and yolks from experimentally and naturally infected chickens. Vet. Rec. 1996, 138, 223–226, doi:10.1136/vr.138.10.223.
[39]
Rasolofo-Razanamparany, V.; Cassel-Beraud, A.M.; Roux, J.; Sansonetti, P.J.; Phalipon, A. Predominance of serotype-specific mucosal antibody response in shigella flexneri-infected humans living in an area of endemicity. Infect. Immun. 2001, 69, 5230–5234, doi:10.1128/IAI.69.9.5230-5234.2001.
[40]
Van Zijderveld, F.G.; van Zijderveld-van Bemmel, A.M.; Anakotta, J. Comparison of four different enzyme-linked immunosorbent assays for serological diagnosis of Salmonella Enteritidis infections in experimentally infected chickens. J. Clin. Microbiol. 1992, 30, 2560–2566.
[41]
Baay, M.F.; Huis in’t Veld, J.H. Alternative antigens reduce cross-reactions in an elisa for the detection of Salmonella Enteritidis in poultry. J. Appl. Bacteriol 1993, 74, 243–247, doi:10.1111/j.1365-2672.1993.tb03021.x.
[42]
Kilger, G.; Grimont, P.A. Differentiation of Salmonella phase 1 flagellar antigen types by restriction of the amplified flic gene. J. Clin. Microbiol. 1993, 31, 1108–1110.
[43]
Newton, S.M.; Wasley, R.D.; Wilson, A.; Rosenberg, L.T.; Miller, J.F.; Stocker, B.A. Segment iv of a Salmonella flagellin gene specifies flagellar antigen epitopes. Mol. Microbiol. 1991, 5, 419–425, doi:10.1111/j.1365-2958.1991.tb02124.x.
[44]
Joys, T.M. The covalent structure of the phase-1 flagellar filament protein of Salmonella Typhimurium and its comparison with other flagellins. J. Biol. Chem. 1985, 260, 15758–15761.
[45]
Rosenberg, I.M. Protein Analysis and Purification: Benchtop Techniques; Birkhauser: Boston, MA, USA, 1996.
[46]
Balfour, A.H.; Harford, J.P. Quality Control and Standardization in Elisa in the Clinical Laboratory; Public Health Service Laboratory: London, UK, 1990; pp. 36–47.
[47]
United States. Animal and Plant Health Inspection Service. National Poultry Improvement Plan and Auxiliary Provisions. Amendments to Provisions. Fed. Regist. 2001, 66, 37919–37932.
[48]
Rigby, C.E.; Pettit, J.R. Delayed secondary enrichment for the isolation of salmonellae from broiler chickens and their environment. Appl. Environ. Microbiol. 1980, 40, 783–786.
[49]
Fda food safety modernization act. U.S. Food and Drug Administration, 2011. 2011. Available online: http://www.fda.gov/Food/GuidanceRegulation/FSMA/ucm247548.htm (accessed on 4 April 2013).
[50]
Hilton, A.C.; Banks, J.G.; Penn, C.W. Optimization of rapd for fingerprinting Salmonella. Lett. Appl. Microbiol. 1997, 24, 243–248, doi:10.1111/j.1574-6941.1997.tb00441.x.
[51]
Wittwer, C.T.; Fillmore, G.C.; Hillyard, D.R. Automated polymerase chain reaction in capillary tubes with hot air. Nucleic Acids Res. 1989, 17, 4353–4357, doi:10.1093/nar/17.11.4353.
[52]
Sambrook, J.; Fritsch, E.R.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989.
[53]
Ausubel, F.M. Current Protocols in Molecular Biology; John Wiley & Sons: New York, NY, USA, 2001; p. 4v.
[54]
Weiner, M.P.; Anderson, C.; Jerpseth, B.; Wells, S.; Johnson-Browne, B. Sturdier pET system vectors and hosts. Strategies 1994, 7, 41–43.
[55]
Yanisch-Perron, C.; Vieira, J.; Messing, J. Improved m13 phage cloning vectors and host strains: Nucleotide sequences of the m13mp18 and puc19 vectors. Gene 1985, 33, 103–119, doi:10.1016/0378-1119(85)90120-9.
[56]
Swamy, S.C.; Barnhart, H.M.; Lee, M.D.; Dreesen, D.W. Virulence determinants inva and spvc in salmonellae isolated from poultry products, wastewater, and human sources. Appl. Environ. Microbiol. 1996, 62, 3768–3771.
[57]
Cronan, J.E., Jr. Biotination of proteins in vivo. a post-translational modification to label, purify, and study proteins. J. Biol. Chem. 1990, 265, 10327–10333.
[58]
Lammeli, U. Cleavage of structural proteins during the assembly of the head of bacteriophage t4. Nature 1970, 227, 680–685, doi:10.1038/227680a0.
[59]
Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 1979, 76, 4350–4354, doi:10.1073/pnas.76.9.4350.
[60]
Hong, Y.; Liu, T.; Lee, M.D.; Hofacre, C.L.; Maier, M.; White, D.G.; Ayers, S.; Wang, L.; Berghaus, R.; Maurer, J.J. Rapid screening of Salmonella enterica serovars Enteritidis, hadar, heidelberg and Typhimurium using a serologically-correlative allelotyping pcr targeting the o and h antigen alleles. BMC Microbiol. 2008, 8, 178, doi:10.1186/1471-2180-8-178.