This paper presents feedforward, feedback and two-degree-of-freedom control applied to an Ionic Polymer-Metal Composite (IPMC) actuator. It presents a high potential for development of miniature robots and biomedical devices and artificial muscles. We have reported in the last few years that dehydration treatment improves the electrical controllability of bending in Selemion CMV-based IPMCs. We tried to replicate this controllability in Nafion-based IPMC. We found that the displacement of a Nafion-based IPMC was proportional to the total charge imposed, just as in the Selemion-CMV case. This property is the basis of self-sensing controllers for Nafion-based IPMC bending behavior: we perform bending curvature experiments on Nafion-based IPMCs, obtaining the actuator's dynamics and transfer function. From these, we implemented self-sensing controllers using feedforward, feedback and two-degree-of-freedom techniques. All three controllers performed very well with the Nafion-based IPMC actuator.
References
[1]
Oguro, K.; Kawami, Y.; Takenaka, H. Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. Trans. J. Micromach. Soc.?1992, 5, 27–30.
[2]
Oguro, K.; Asaka, K.; Takenaka, H. Polymer Film Actuator Driven by Low Voltage. In Proceedings of 4th International Symposium on Micro Machine and Human Science, Nagoya, Japan, 13–15 October 1993; pp. 39–40.
[3]
Asaka, K.; Oguro, K.; Nishimura, Y.; Mizuhara, M.; Takenaka, H. Bending of polyelectrolyte membrane-platinum composite by electric stimuli I, response characteristics to various waver forms. Polym. J.?1995, 27, 436–440, doi:10.1295/polymj.27.436.
[4]
Salehpoor, K.; Shahinpoor, M.; Mojarrad, M. Linear and platform type robotic actuators made from ion-exchange membrane-metal composites. Proc. SPIE Smart Mater. Struct.?1997, 3040, 192–198.
[5]
Bar-Cohen, Y.; Xue, T.; Shahinpoor, M.; Salehpoor, K.; Simpson, J.; Smith, J. Low-mass muscle actuators using electroactive polymers (EAP). Proc. SPIE Smart Mater. Struct.?1998, 3324, 218–223.
[6]
Bar-Cohen, Y.; Leary, S.; Yavrouian, A.; Oguro, K.; Tadokoro, S.; Harrison, J.; Smith, J.; Su, J. Challenges to the Transition Ipmc Artificial Muscle Actuators to Practical Application. In MRS Symposium Proceedings, Boston, MA, USA; 1999.
[7]
Dole, U.; Lumia, R.; Shahinpoor, M.; Bermudez, M. Design and test of IPMC artificial muscle microgripper. J. Micro-Nano Mech.?2008, 4, 95–102, doi:10.1007/s12213-008-0004-z.
[8]
Sugi, H. Seitaidenkishingoutoha Nanika. (in Japanese); Kodansha: Tokyo, Japan, 2006.
[9]
Tamagawa, H.; Nogata, F. Bending response of dehydrated ion exchange polymer membranes to the applied voltage. J. Membrane Sci.?2004, 243, 229–234, doi:10.1016/j.memsci.2004.06.024.
[10]
Tamagawa, H.; Nogata, F. Atomic structural change of silver-plating layers on the surfaces of Selemion, resulting in its excellent bending controllability. Sens. Actuators B Chem.?2006, 114, 781–787, doi:10.1016/j.snb.2005.07.043.
[11]
Tamagawa, H.; Nogata, F. Charge and water in need for the precise control of Selemion bending. Sens. Actuators B Chem.?2007, 121, 469–475, doi:10.1016/j.snb.2006.04.072.
[12]
Tamagawa, H.; Lin, W.; Kikuchi, K.; Sasaki, M. Bending control of nafion-based electroactive polymer actuator coated with multi-walled carbon nanotubes. Sens. Actuators B Chem.?2011, 156, 375–382, doi:10.1016/j.snb.2011.04.053.
[13]
Sasaki, M.; Ozeki, T.; Ito, S.; Tamagawa, H. Position control of a dual-stage actuator. Inter. J. Appl. Eletromagn. Mech.?2010, 33, 839–847.
[14]
Sasaki, M.; Onouchi, Y.; Ozeki, T.; Tamagawa, T.; Ito, S. Feedforward control of an Ionic Polymer-Metal Composite actuator. Inter. J. Appl. Eletromagn. Mech.?2010, 33, 875–881.
[15]
Sasaki, M.; Onouchi, Y.; Tamagawa, T.; Ito, S. Two-degree-of-freedom control of an ionic polymer-metal composite actuator. Mater. Sci. Forum?2011, 670, 369–378.
[16]
Takeno, A.; Nakagaki, N.; Miwa, M. Anisotropic transparency of polystyrene film with crazes. Adv. Compos. Mater.?1998, 7, 35–46, doi:10.1163/156855198X00039.
[17]
Noguchi, F.; Iwashige, Y.; Takeno, A.; Miwa, M. View field selective film of Mono-component polyester composites. J. Adv. Sci.?2001, 13, 382–385, doi:10.2978/jsas.13.382.
[18]
Takeno, A.; Yoshimura, M.; Miwa, M.; Yokoi, T. Anisotropic electric conductivity and light transmittance of polypyrrole/poly(vinylidene fluoride) composited film by polymerization in craze. Sen’i Gakkaishi?2001, 57, 301–305. (in Japanese), doi:10.2115/fiber.57.301.
[19]
Takeno, A.; Ozeki, T.; Miwa, M.; Yokoi, T. Periodic micro-necking of polyester filament. Sen’i Gakkaishi?2007, 63, 172–176. (in Japanese), doi:10.2115/fiber.63.172.
[20]
Onouchi, Y.; Tamagawa, H.; Sasaki, M. Dependence of curvature of dehydrated Selemion on the total charge and environmental humidity. Inter. J. Appl. Eletromagn. Mech.?2009, 17, 59–64.
[21]
Yun, K.; Kim, W.J. System identification and microposition control of ionic polymer metal composite for three finger gripper manipulation. Proc. IMechE JSCE215?2006, 220, 539–551.
[22]
La, H.M.; Sheng, W. Robust Adaptive Control with Leakage Modification for A Nonlinear Model of Ionic Polymer Metal Composites (IPMC). In Proceedings of the IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand, 22–25 February 2009; pp. 1783–1788.
[23]
Richardson, R.C.; Levesley, M.C.; Brown, M.D.; Hawkes, J.A.; Watterson, K.; Walker, P.G. Control of ionic polymer metal composites. IEEE/ASME Trans. Mechatr.?2003, 8, 245–253, doi:10.1109/TMECH.2003.812835.