全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Surgery  2013 

A Review of the Clinical Outcomes for Patients Diagnosed with Brainstem Metastasis and Treated with Stereotactic Radiosurgery

DOI: 10.1155/2013/652895

Full-Text   Cite this paper   Add to My Lib

Abstract:

Only 3%–5% of all brain metastases are located in the brainstem. We present a comprehensive review of the clinical outcomes from modern studies that treated patients with brainstem metastasis using either a Gamma Knife or a linear accelerator-based stereotactic radiosurgery. The median survival time of patients was compared to better understand what clinical or treatment factors are predictive of improved survival. This information can then be utilized to optimize patient care. The data suggests that higher prescribed marginal dose and the associated greater local control of brainstem lesions are associated with longer patient survival. Further research is necessary to better describe the most effective dose for individual brainstem lesions and to tailor optimum therapy to specific patient subgroups. 1. Introduction Brain metastases travel via the vascular system to the brain [1], and 40% of patients diagnosed with systemic cancer will develop brain metastasis [2, 3]. Although the occurrence of BSM is relatively low (approximately 3%–5% of all brain metastasis cases), the prognosis for this subset is very poor [4]. Clinical reviews of patients treated for BSM report historical median survival times ranging from 1 to 11 months [5]. Furthermore, the delicate nature and location of the brainstem make it a difficult structure to treat. There is excessive morbidity from conventional neurosurgery and most chemotherapeutic agents are ineffective secondary to the blood-brain barrier. Whole-brain radiation (WBRT) therapy and stereotactic radiosurgery (SRS) (by Gamma Knife or linear accelerator [LINAC]) have proved to be effective treatment modalities for BSM [4–10]. In fact, for many patients diagnosed with BSM, radiation is the only viable treatment modality. Both LINAC and Gamma Knife treatments expose cancerous lesions to high energy X-rays in an attempt to cause irreversible damage to the DNA strands of the target cells and eventually cause cell death. The purpose of this paper is to review the clinical outcomes and survival statistics of patients diagnosed with brainstem metastasis who have been treated by these targeted radiation techniques. 2. Review Due to the difficulty and increased risk of treating BSM with conventional neurosurgery, treatment with radiation therapy (especially SRS) has become standard. We review and discuss twelve series published between 1999 and 2011. In each of these studies, patients were treated with SRS using either LINAC- or Gamma-Knife-based systems. 2.1. Survival As seen from Table 1, patients diagnosed with BSM have median

References

[1]  M. A. Hatiboglu, E. L. Chang, D. Suki, R. Sawaya, D. M. Wildrick, and J. S. Weinberg, “Outcomes and prognostic factors for patients with brainstem metastases undergoing stereotactic radiosurgery,” Neurosurgery, vol. 69, no. 4, pp. 796–806, 2011.
[2]  N. Dea, M. Borduas, B. Kenny, D. Fortin, and D. Mathieu, “Safety and efficacy of Gamma Knife surgery for brain metastases in eloquent locations,” Journal of Neurosurgery, vol. 113, supplement, pp. 79–83, 2010.
[3]  J. B. Posner, “Management of brain metastases,” Revue Neurologique, vol. 148, no. 6-7, pp. 477–487, 1992.
[4]  T. W. Yoo, E. S. Park, H. Kwon do, and C. J. Kim, “Gamma knife radiosurgery for brainstem metastasis,” Journal of Korean Neurosurgical Society, vol. 50, no. 4, pp. 299–303, 2011.
[5]  S. A. Koyfman, R. D. Tendulkar, S. T. Chao, et al., “Stereotactic radiosurgery for single brainstem metastases: the cleveland clinic experience,” International Journal of Radiation Oncology, Biology, Physics, vol. 78, no. 2, pp. 409–414, 2010.
[6]  M. Hirato, M. Nakamura, H. K. Inoue et al., “Gamma knife radiosurgery for the treatment of brainstem tumors,” Stereotactic and Functional Neurosurgery, vol. 64, supplement 1, pp. 32–41, 1995.
[7]  C. F. Huang, D. Kondziolka, J. C. Flickinger, and L. D. Lunsford, “Stereotactic radiosurgery for brainstem metastases,” Journal of Neurosurgery, vol. 91, no. 4, pp. 563–568, 1999.
[8]  A. Hussain, P. D. Brown, S. L. Stafford, and B. E. Pollock, “Stereotactic radiosurgery for brainstem metastases: survival, tumor control, and patient outcomes,” International Journal of Radiation Oncology, Biology, Physics, vol. 67, no. 2, pp. 521–524, 2007.
[9]  T. Shuto, H. Fujino, H. Asada, S. Inomori, and H. Nagano, “Gamma knife radiosurgery for metastatic tumours in the brain stem,” Acta Neurochirurgica, vol. 145, no. 9, pp. 755–760, 2003.
[10]  C. P. Yen, J. Sheehan, G. Patterson, and L. Steiner, “Gamma Knife surgery for metastatic brainstem tumors,” Journal of Neurosurgery, vol. 105, no. 2, pp. 213–219, 2006.
[11]  C. A. Valery, C. Boskos, G. Boisserie et al., “Minimized doses for linear accelerator radiosurgery of brainstem metastasis,” International Journal of Radiation Oncology, Biology, Physics, vol. 80, no. 2, pp. 362–368, 2011.
[12]  P. J. Kelly, Y. B. Lin, A. Y. Yu, et al., “Linear accelerator-based stereotactic radiosurgery for brainstem metastases: the Dana-Farber/Brigham and Women's Cancer Center experience,” Journal of Neuro-Oncology, vol. 104, no. 2, pp. 553–557, 2011.
[13]  J. G. Lorenzoni, D. Devriendt, N. Massager et al., “Brain stem metastases treated with radiosurgery: prognostic factors of survival and life expectancy estimation,” Surgical Neurology, vol. 71, no. 2, pp. 188–196, 2009.
[14]  N. Kased, K. Huang, J. L. Nakamura et al., “Gamma Knife radiosurgery for brainstem metastases: the UCSF experience,” Journal of Neuro-Oncology, vol. 86, no. 2, pp. 195–205, 2008.
[15]  S. Fuentes, C. Delsanti, P. Metellus, J. C. Peragut, F. Grisoli, and J. Regis, “Brainstem metastases: management using Gamma Knife radiosurgery,” Neurosurgery, vol. 58, no. 1, pp. 37–42, 2006.
[16]  Y. Mori, D. Kondziolka, J. C. Flickinger, T. Logan, and L. D. Lunsford, “Stereotactic radiosurgery for brain metastasis from renal cell carcinoma,” Cancer, vol. 83, no. 2, pp. 344–353, 1998.
[17]  P. K. Sneed, J. H. Suh, S. J. Goetsch et al., “A multi-institutional review of radiosurgery alone vs. radiosurgery with whole brain radiotherapy as the initial management of brain metastases,” International Journal of Radiation Oncology, Biology, Physics, vol. 53, no. 3, pp. 519–526, 2002.
[18]  G. Simonova, R. Liscak, J. Novotny Jr., and J. Novotny, “Solitary brain metastases treated with the Leksell gamma knife: prognostic factors for patients,” Radiotherapy and Oncology, vol. 57, no. 2, pp. 207–213, 2000.
[19]  D. W. Andrews, C. B. Scott, P. W. Sperduto et al., “Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial,” The Lancet, vol. 363, no. 9422, pp. 1665–1672, 2004.
[20]  R. M. Auchter, J. P. Lamond, E. Alexander et al., “A multiinstitutional outcome and prognostic factor analysis of radiosurgery for resectable single brain metastasis,” International Journal of Radiation Oncology, Biology, Physics, vol. 35, no. 1, pp. 27–35, 1996.
[21]  M. A. Vogelbaum, L. Angelov, S. Y. Lee, L. Li, G. H. Barnett, and J. H. Suh, “Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin,” Journal of Neurosurgery, vol. 104, no. 6, pp. 907–912, 2006.
[22]  M. S. Sharma, D. Kondziolka, A. Khan et al., “Radiation tolerance limits of the brainstem,” Neurosurgery, vol. 63, no. 4, pp. 728–733, 2008.
[23]  C. Mayo, E. Yorke, and T. E. Merchant, “Radiation associated brainstem injury,” International Journal of Radiation Oncology, Biology, Physics, vol. 76, no. 3, supplement, pp. S36–S41, 2010.
[24]  E. A. Monaco III, A. Niranjan, H. Kano, J. C. Flickinger, D. Kondziolka, and L. D. Lunsford, “Management of adverse radiation effects after radiosurgery,” Progress in Neurological Surgery, vol. 25, pp. 210–220, 2012.
[25]  L. R. Coia, “The role of radiation therapy in the treatment of brain metastases,” International Journal of Radiation Oncology, Biology, Physics, vol. 23, no. 1, pp. 229–238, 1992.
[26]  J. Lorenzoni, D. Devriendt, N. Massager et al., “Radiosurgery for treatment of brain metastases: estimation of patient eligibility using three stratification systems,” International Journal of Radiation Oncology, Biology, Physics, vol. 60, no. 1, pp. 218–224, 2004.
[27]  L. J. Hazard, R. L. Jensen, and D. C. Shrieve, “Role of stereotactic radiosurgery in the treatment of brain metastases,” American Journal of Clinical Oncology, vol. 28, no. 4, pp. 403–410, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133