Purpose. Operative efficiency improvements for laparoscopic ventral hernia repair (LVHR) have focused on reducing operative time while maintaining overall repair efficacy. Our objective was to evaluate procedure time and positioning accuracy of an inflatable mesh positioning device (ECHO PS Positioning System), as compared to a standard transfascial suture technique, using a porcine model of simulated LVHR. Methods. The study population consisted of seventeen general surgeons ( ) that performed simulated LVHR on seventeen ( ) female Yorkshire pigs using two implantation techniques: (1) VENTRALIGHT ST Mesh + ECHO PS Positioning System (ECHO PS) and (2) VENTRALIGHT ST Mesh + transfascial sutures (TSs). Procedure time and mesh centering accuracy overtop of a simulated surgical defect were evaluated. Results. ECHO PS demonstrated a 38.9% reduction in the overall procedure time, as compared to TS. During mesh preparation and positioning, ECHO PS demonstrated a 60.5% reduction in procedure time ( ). Although a trend toward improved centering accuracy was observed for ECHO PS (16.2%), this was not significantly different than TS. Conclusions. ECHO PS demonstrated a significant reduction in overall simulated LVHR procedure time, particularly during mesh preparation/positioning. These operative time savings may translate into reduced operating room costs and improved surgeon/operating room efficiency. 1. Introduction Laparoscopic ventral hernia repair (LVHR) has gained acceptance as a safe and effective alternative to open ventral hernia repair (OVHR), resulting in reduced patient complications and hospital stays [1, 2]. Previous reports have demonstrated procedure time for LVHR to be equivalent or less than OVHR, and there has been an increasing trend towards improvement of LVHR operative efficiency by reducing procedure time/cost while maximizing the aforementioned patient benefits and overall hospital efficiency [1, 3, 4]. A focus on cost effective time management strategies in the operating room has come to the forefront as one area for improvement in healthcare expenditures [5]. One approach for reduction of operative procedure costs associated with LVHR would be to reduce overall procedure time by improving procedure efficiency. In an example of improved procedure efficiency, a team-based approach was implemented by John’s Hopkins University to improve overall efficiency in percutaneous tracheostomy; the resulting expenditure analysis was found to produce significant financial benefits from savings realized on multiple levels [6]. A second approach employs
References
[1]
G. Beldi, R. Ipaktchi, M. Wagner, B. Gloor, and D. Candinas, “Laparoscopic ventral hernia repair is safe and cost effective,” Surgical Endoscopy and Other Interventional Techniques, vol. 20, no. 1, pp. 92–95, 2006.
[2]
B. T. Heniford, A. Park, B. J. Ramshaw, G. Voeller, J. G. Hunter, and R. J. Fitzgibbons, “Laparoscopic repair of ventral hernias: nine year’ experience with 850 consecutive hernias,” Annals of Surgery, vol. 238, no. 3, pp. 391–400, 2003.
[3]
M. S. Sajid, S. A. Bokhari, A. S. Mallick, E. Cheek, and M. K. Baig, “Laparoscopic versus open repair of incisional/ventral hernia: a meta-analysis,” American Journal of Surgery, vol. 197, no. 1, pp. 64–72, 2009.
[4]
S. Olmi, A. Scaini, G. C. Cesana, L. Erba, and E. Croce, “Laparoscopic versus open incisional hernia repair: an open randomized controlled study,” Surgical Endoscopy and Other Interventional Techniques, vol. 21, no. 4, pp. 555–559, 2007.
[5]
I. Hellander and R. Bhargavan, “Report from the United States: the U.S. health crisis deepens amid rising inequality-a review of data, fall 2011,” International Journal of Health Services, vol. 42, no. 2, pp. 161–175, 2012.
[6]
M. A. Mirski, V. Pandian, N. Bhatti et al., “Safety, efficiency, and cost-effectiveness of a multidisciplinary percutaneous tracheostomy program,” Critical Care Medicine, vol. 40, no. 6, pp. 1827–1834, 2012.
[7]
R. R. Cima, M. J. Brown, J. R. Hebl et al., “Use of lean and six sigma methodology to improve operating room efficiency in a high-volume tertiary-care academic medical center,” Journal of the American College of Surgeons, vol. 213, no. 1, pp. 83–92, 2011.
[8]
D. M. Friedman, S. M. Sokal, Y. Chang, and D. L. Berger, “Increasing operating room efficiency through parallel processing,” Annals of Surgery, vol. 243, no. 1, pp. 10–14, 2006.
[9]
M. D. Bacchetta, L. N. Girardi, E. J. Southard et al., “Comparison of open versus bedside percutaneous dilatational tracheostomy in the cardiothoracic surgical patient: outcomes and financial analysis,” Annals of Thoracic Surgery, vol. 79, no. 6, pp. 1879–1885, 2005.
[10]
J. C. Choi, F. G. Bakaeen, L. D. Cornwell et al., “Morbid obesity is associated with increased resource utilization in coronary artery bypass grafting,” Annals of Thoracic Surgery, vol. 94, no. 1, pp. 23–28, 2012.
[11]
S. F. Matin, “Prospective randomized trial of skin adhesive versus sutures for closure of 217 laparoscopic port-site incisions,” Journal of the American College of Surgeons, vol. 196, no. 6, pp. 845–853, 2003.
[12]
M. von Strauss Und Torney, S. Dell-Kuster, R. Mechera, R. Rosenthal, and I. Langer, “The cost of surgical training: analysis or operative time for laparoscopic cholecystectomy,” Surgical Endoscopy, vol. 26, no. 9, pp. 2579–2586, 2012.
[13]
R. D. Shippert, “A study of time-dependent operating room fees and how to save $100,000 by using time-saving products,” American Journal of Cosmetic Surgery, vol. 22, no. 1, pp. 25–34, 2005.
[14]
S. Palmer and J. Raftery, “Economics notes. Opportunity cost,” British Medical Journal, vol. 318, no. 7197, pp. 1551–1552, 1999.
[15]
L. B. Russell, “Opportunity costs in modern medicine,” Health Affairs, vol. 11, no. 2, pp. 162–169, 1992.
[16]
A. Chatterjee, L. Chen, E. A. Goldenberg, H. T. Bae, and S. R. G. Finlayson, “Opportunity cost in the evaluation of surgical innovations: a case study of laparoscopic versus open colectomy,” Surgical Endoscopy and Other Interventional Techniques, vol. 24, no. 5, pp. 1075–1079, 2010.
[17]
L. D. Procter, D. L. Davenport, A. C. Bernard, and J. B. Zwischenberger, “General surgical operative duration is associated with increased risk-adjusted infectious complication rates and length of hospital stay,” Journal of the American College of Surgeons, vol. 210, no. 1, pp. 60–65, 2010.
[18]
D. Rüsch, L. H. J. Eberhart, J. Wallenborn, and P. Kranke, “Nausea and vomiting after surgery under general anesthesia—an evidence-based review concerning risk assessment, prevention, and treatment,” Deutsches Arzteblatt, vol. 107, no. 42, pp. 733–741, 2010.
[19]
C. K. Mitchell, S. H. Smoger, M. P. Pfeifer et al., “Multivariate analysis of factors associated with postoperative pulmonary complications following general elective surgery,” Archives of Surgery, vol. 133, no. 2, pp. 194–198, 1998.
[20]
A. Macario, “Are your operating rooms “efficient”?” OR Manager, vol. 23, no. 12, pp. 16–18, 2007.