全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Surgery  2013 

Control of Bleeding in Endoscopic Skull Base Surgery: Current Concepts to Improve Hemostasis

DOI: 10.1155/2013/191543

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hemostasis is critical for adequate anatomical visualization during endoscopic endonasal skull base surgery. Reduction of intraoperative bleeding should be considered during the treatment planning and continued throughout the perioperative period. Preoperative preparations include the optimization of comorbidities and cessation of drugs that may inhibit coagulation. Intraoperative considerations comprise anesthetic and surgical aspects. Controlled hypotension is the main anesthetic technique to reduce bleeding; however, there is controversy regarding its effectiveness; what the appropriate mean arterial pressure is and how to maintain it. In extradural cases, we advocate a mean arterial pressure of 65–70?mm?Hg to reduce bleeding while preventing ischemic complications. For dealing intradural lesion, controlled hypotension should be cautious. We do not advocate a marked blood pressure reduction, as this often affects the perfusion of neural structures. Further reduction could lead to stroke or loss of cranial nerve function. From the surgical perspective, there are novel technologies and techniques that reduce bleeding, thus, improving the visualization of the surgical field. 1. Introduction Endoscopic surgery is a minimally invasive technique that has found a niche in all surgical fields. Endoscopic endonasal surgery ranges from basic and relatively straightforward procedures (e.g., endoscopic septoplasty, endoscopic turbinoplasty, and functional endoscopic sinus surgery) to advanced surgery (e.g., endoscopic orbital and/or optic nerve decompression, endoscopic dacryocystorhinostomy, and endoscopic endonasal skull base approaches). Its advantages are obviating external scars, reducing damage to normal tissue and bone, and shortening recovery time and length of hospital stay. However, intraoperative bleeding presents a larger obstacle to endoscopic visualization. Blood obscures the anatomy of the surgical field and dirties the endoscope lens causing greater difficulty with visualization. This situation increases the risk of complications, including brain injury, orbital or optic nerve injury, and catastrophic bleeding from major vessels (e.g., internal carotid artery). We advocate careful consideration of all factors regarding the control of bleeding throughout the entire perioperative period. Preoperative preparations include the optimization of co-morbidities and cessation of drugs that may increase the tendency for bleeding. Intraoperative considerations comprise anesthetic and surgical aspects. Some anesthetic aspects are controversial including the

References

[1]  M. Cobas, “Preoperative assessment of coagulation disorders,” International Anesthesiology Clinics, vol. 39, no. 1, pp. 1–15, 2001.
[2]  P. Sié and A. Steib, “Central laboratory and point of care assessment of perioperative hemostasis,” Canadian Journal of Anesthesia, vol. 53, no. 6, supplement, pp. S12–S20, 2006.
[3]  R. P. Channing Rodgers and J. Levin, “A critical reappraisal of the bleeding time,” Seminars in Thrombosis and Hemostasis, vol. 16, no. 1, pp. 1–20, 1990.
[4]  P. Peterson, T. E. Hayes, C. F. Arkin et al., “The preoperative bleeding time test lacks clinical benefit: College of American Pathologists' and American society of clinical pathologists' position article,” Archives of Surgery, vol. 133, no. 2, pp. 134–139, 1998.
[5]  P. Harrison, I. Mackie, A. Mumford et al., “Guidelines for the laboratory investigation of heritable disorders of platelet function,” British Journal of Haematology, vol. 155, no. 1, pp. 30–44, 2011.
[6]  J. D. Douketis, P. B. Berger, A. S. Dunn et al., “The perioperative management of antithrombotic therapy: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition),” Chest, vol. 133, no. 6, supplement, pp. 299S–339S, 2008.
[7]  M. J. Kovacs, C. Kearon, M. Rodger et al., “Single-arm study of bridging therapy with low-molecular-weight heparin for patients at risk of arterial embolism who require temporary interruption of warfarin,” Circulation, vol. 110, no. 12, pp. 1658–1663, 2004.
[8]  R. H. White, T. McKittrick, R. Hutchinson, and J. Twitchell, “Temporary discontinuation of warfarin therapy: changes in the international normalized ratio,” Annals of Internal Medicine, vol. 122, no. 1, pp. 40–42, 1995.
[9]  J. D. Douketis, K. Woods, G. A. Foster, and M. A. Crowther, “Bridging anticoagulation with low-molecular-weight heparin after interruption of warfarin therapy is associated with a residual anticoagulant effect prior to surgery,” Thrombosis and Haemostasis, vol. 94, no. 3, pp. 528–531, 2005.
[10]  T. Kanazawa, R. Inoue, Y. Ohta, Y. Watanabe, and Y. Iino, “Maxillary haemangioma successfully resected by endoscopic approach,” Journal of Laryngology and Otology, vol. 123, no. 7, pp. 793–795, 2009.
[11]  J. J. Gemmete, S. A. Ansari, J. McHugh, and D. Gandhi, “Embolization of vascular tumors of the head and neck,” Neuroimaging Clinics of North America, vol. 19, no. 2, pp. 181–198, 2009.
[12]  A. Casasco, D. Herbreteau, E. Houdart et al., “Devascularization of craniofacial tumors by percutaneous tumor puncture,” The American Journal of Neuroradiology, vol. 15, no. 7, pp. 1233–1239, 1994.
[13]  M. S. Elhammady, E. C. Peterson, J. N. Johnson, and M. A. Aziz-Sultan, “Preoperative onyx embolization of vascular head and neck tumors by direct puncture,” World Neurosurgery, vol. 77, no. 5, pp. 725–730, 2012.
[14]  A. Sieskiewicz, E. Olszewska, M. Rogowski, and E. Grycz, “Preoperative corticosteroid oral therapy and intraoperative bleeding during functional endoscopic sinus surgery in patients with severe nasal polyposis: a preliminary investigation,” Annals of Otology, Rhinology and Laryngology, vol. 115, no. 7, pp. 490–494, 2006.
[15]  P. Simpson, “Perioperative blood loss and its reduction: the role of the anaesthetist,” British Journal of Anaesthesia, vol. 69, no. 5, pp. 498–507, 1992.
[16]  M.-T. Ko, K.-C. Chuang, and C.-Y. Su, “Multiple analyses of factors related to intraoperative blood loss and the role of reverse Trendelenburg position in endoscopic sinus surgery,” Laryngoscope, vol. 118, no. 9, pp. 1687–1691, 2008.
[17]  A. M. Atef and A. Fawaz, “Comparison of laryngeal mask with endotracheal tube for anesthesia in endoscopic sinus surgery,” The American Journal of Rhinology, vol. 22, no. 6, pp. 653–657, 2008.
[18]  V. Nekhendzy, H. J. M. Lemmens, W. C. Vaughan et al., “The effect of deliberate hypercapnia and hypocapnia on intraoperative blood loss and quality of surgical field during functional endoscopic sinus surgery,” Anesthesia and Analgesia, vol. 105, no. 5, pp. 1404–1409, 2007.
[19]  J. C. Kubitz, G. I. Kemming, G. Schultheiss et al., “The influence of PEEP and tidal volume on central blood volume,” European Journal of Anaesthesiology, vol. 23, no. 11, pp. 954–961, 2006.
[20]  P. Gilbey, Y. Kukuev, A. Samet, Y. Talmon, and S. Ivry, “The quality of the surgical field during functional endoscopic sinus surgery-the effect of the mode of ventilation: a randomized, prospective, double-blind Study,” Laryngoscope, vol. 119, no. 12, pp. 2449–2453, 2009.
[21]  C.-S. Degoute, “Controlled hypotension: a guide to drug choice,” Drugs, vol. 67, no. 7, pp. 1053–1076, 2007.
[22]  P. E. Marik, “Propofol: therapeutic indications and side-effects,” Current Pharmaceutical Design, vol. 10, no. 29, pp. 3639–3649, 2004.
[23]  S. P. Ankichetty, M. Ponniah, V. T. Cherian et al., “Comparison of total intravenous anesthesia using propofol and inhalational anesthesia using isoflurane for controlled hypotension in functional endoscopic sinus surgery,” Journal of Anaesthesiology Clinical Pharmacology, vol. 27, no. 3, pp. 328–332, 2011.
[24]  H.-S. Yoo, J. H. Han, S. W. Park, and K. S. Kim, “Comparison of surgical condition in endoscopic sinus surgery using remifentanil combined with propofol, sevoflurane, or desflurane,” Korean Journal of Anesthesiology, vol. 59, no. 6, pp. 377–382, 2010.
[25]  S. M. Ragab and M. Z. Hassanin, “Optimizing the surgical field in pediatric functional endoscopic sinus surgery: a new evidence-based approach,” Otolaryngology, vol. 142, no. 1, pp. 48–54, 2010.
[26]  H. J. Ahn, S.-K. Chung, H.-J. Dhong et al., “Comparison of surgical conditions during propofol or sevoflurane anaesthesia for endoscopic sinus surgery,” British Journal of Anaesthesia, vol. 100, no. 1, pp. 50–54, 2008.
[27]  A. G. Beule, F. Wilhelmi, T. S. Kühnel, E. Hansen, K. J. Lackner, and W. Hosemann, “Propofol versus sevoflurane: bleeding in endoscopic sinus surgery,” Otolaryngology, vol. 136, no. 1, pp. 45–50, 2007.
[28]  P. J. Wormald, G. Van Renen, J. Perks, J. A. Jones, and C. D. Langton-Hewer, “The effect of the total intravenous anesthesia compared with inhalational anesthesia on the surgical field during endoscopic sinus surgery,” The American Journal of Rhinology, vol. 19, no. 5, pp. 514–520, 2005.
[29]  R. Sivaci, M. D. Yilmaz, C. Balci, T. Erincler, and H. Unlu, “Comparison of propofol and sevoflurane anesthesia by means of blood loss during endoscopic sinus surgery,” Saudi Medical Journal, vol. 25, no. 12, pp. 1995–1998, 2004.
[30]  L. H. J. Eberhart, B. J. Folz, H. Wulf, and G. Geldner, “Intravenous anesthesia provides optimal surgical conditions during microscopic and endoscopic sinus surgery,” Laryngoscope, vol. 113, no. 8, pp. 1369–1373, 2003.
[31]  D. B. Tulman, S. P. A. Stawicki, T. J. Papadimos, C. V. Murphy, and S. D. Bergese, “Advances in management of acute hypertension: a concise review,” Discovery Medicine, vol. 13, no. 72, pp. 375–383, 2012.
[32]  A. P. Boezaart, J. Van der Merwe, and A. Coetzee, “Comparison of sodium nitroprusside- and esmolol-induced controlled hypotension for functional endoscopic sinus surgery,” Canadian Journal of Anaesthesia, vol. 42, no. 5 I, pp. 373–376, 1995.
[33]  K. E. Jacobi, B. E. B?hm, A. J. Rickauer, C. Jacobi, and T. M. Hemmerling, “Moderate controlled hypotension with sodium nitroprusside does not improve surgical conditions or decrease blood loss in endoscopic sinus surgery,” Journal of Clinical Anesthesia, vol. 12, no. 3, pp. 202–207, 2000.
[34]  A. M. Mengistu, M. W. Wolf, J. Boldt, K. D. R?hm, S. W. Suttner, and S. N. Piper, “Influence of controlled hypotension using esmolol and sodium nitroprusside on natriuretic peptides in patients undergoing endonasal sinus surgery,” European Journal of Anaesthesiology, vol. 24, no. 6, pp. 529–534, 2007.
[35]  G. A. Fromme, R. A. MacKenzie, A. B. Gould Jr., B. A. Lund, and K. P. Offord, “Controlled hypotension for orthognathic surgery,” Anesthesia and Analgesia, vol. 65, no. 6, pp. 683–686, 1986.
[36]  A. Sie?kiewicz, A. Drozdowski, and M. Rogowski, “The assessment of correlation between mean arterial pressure and intraoperative bleeding during endoscopic sinus surgery in patients with low heart rate,” Otolaryngologia Polska, vol. 64, no. 4, pp. 225–228, 2010.
[37]  R. Hugosson and S. H?gstr?m, “Factors disposing to morbidity in surgery of intracranial aneurysms with special regard to deep controlled hypotension,” Journal of Neurosurgery, vol. 38, no. 5, pp. 561–567, 1973.
[38]  A. Kassam, C. H. Snyderman, R. L. Carrau, P. Gardner, and A. Mintz, “Endoneurosurgical hemostasis techniques: lessons learned from 400 cases,” Neurosurgical focus, vol. 19, no. 1, article E7, 2005.
[39]  R. Cohen-Kerem, S. Brown, L. V. Villase?or, and I. Witterick, “Epinephrine/lidocaine injection vs. saline during endoscopic sinus surgery,” Laryngoscope, vol. 118, no. 7, pp. 1275–1281, 2008.
[40]  P.-J. Wormald, T. Athanasiadis, G. Rees, and S. Robinson, “An evaluation of effect of pterygopalatine fossa injection with local anesthetic and adrenalin in the control of nasal bleeding during endoscopic sinus surgery,” The American Journal of Rhinology, vol. 19, no. 3, pp. 288–292, 2005.
[41]  A. R. Javer, H. Gheriani, B. Mechor, D. Flamer, K. Genoway, and W. K. Yunker, “Effect of intraoperative injection of 0.25% bupivacaine with 1:200,000 epinephrine on intraoperative blood loss in FESS,” The American Journal of Rhinology and Allergy, vol. 23, no. 4, pp. 437–441, 2009.
[42]  T. Athanasiadis, A. G. Beule, and P. J. Wormald, “Effects of topical antifibrinolytics in endoscopic sinus surgery: a pilot randomized controlled trial,” The American Journal of Rhinology, vol. 21, no. 6, pp. 737–742, 2007.
[43]  R. M. Gall, I. J. Witterick, N. S. Shargill, and M. Hawke, “Control of bleeding in endoscopic sinus surgery: use of a novel gelatin-based hemostatic agent,” Journal of Otolaryngology, vol. 31, no. 5, pp. 271–274, 2002.
[44]  E. H. Kim, J. Y. Ahn, J. H. Chang, and S. H. Kim, “Management strategies of intercavernous sinus bleeding during transsphenoidal surgery,” Acta Neurochirurgica, vol. 151, no. 7, pp. 803–808, 2009.
[45]  A. D. Bedi, S. A. Toms, and A. R. Dehdashti, “Use of hemostatic matrix for hemostasis of the cavernous sinus during endoscopic endonasal pituitary and suprasellar tumor surgery,” Skull Base, vol. 21, no. 3, pp. 189–192, 2011.
[46]  J. L. Antisdel, C. G. Janney, J. P. Long, and R. Sindwani, “Hemostatic agent Microporous Polysaccharide Hemospheres (MPH) does not affect healing or intact sinus mucosa,” Laryngoscope, vol. 118, no. 7, pp. 1265–1269, 2008.
[47]  R. K. Chandra, D. B. Conley, and R. C. Kern, “The effect of FloSeal on mucosal healing after endoscopic sinus surgery: a comparison with thrombin-soaked gelatin foam,” The American Journal of Rhinology, vol. 17, no. 1, pp. 51–55, 2003.
[48]  M. G. Shrime, A. Tabaee, A. K. Hsu, S. Rickert, and L. G. Close, “Synechia formation after endoscopic sinus surgery and middle turbinate medialization with and without FloSeal,” The American Journal of Rhinology, vol. 21, no. 2, pp. 174–179, 2007.
[49]  B. A. Woodworth, R. K. Chandra, J. D. LeBenger, B. Ilie, and R. J. Schlosser, “A gelatin-thrombin matrix for hemostasis after endoscopic sinus surgery,” The American Journal of Otolaryngology, vol. 30, no. 1, pp. 49–53, 2009.
[50]  R. Sindwani, “Use of novel hemostatic powder MPH for endoscopic sinus surgery: initial impressions,” Otolaryngology, vol. 140, no. 2, pp. 262–263, 2009.
[51]  J. L. Antisdel, J. L. Matijasec, J. Y. Ting, and R. Sindwani, “Microporous polysaccharide hemospheres do not increase synechiae after sinus surgery: randomized controlled study,” The American Journal of Rhinology and Allergy, vol. 25, no. 4, pp. 268–271, 2011.
[52]  G. Phookan, A. T. Davis, and B. Holmes, “Hemangioendothelioma of the cavernous sinus: case report,” Neurosurgery, vol. 42, no. 5, pp. 1153–1156, 1998.
[53]  L. N. Sekhar, S. K. Natarajan, T. Manning, and D. Bhagawati, “The use of fibrin glue to stop venous bleeding in the epidural space, vertebral venous plexus, and anterior cavernous sinus: technical note,” Neurosurgery, vol. 61, no. 3, article E51, 2007.
[54]  J. F. Fraser, A. Y. Mass, S. Brown, V. K. Anand, and T. H. Schwartz, “Transnasal endoscopic resection of a cavernous sinus hemangioma: technical note and review of the literature,” Skull Base, vol. 18, no. 5, pp. 309–315, 2008.
[55]  S.-E. Stangerup, H. O. Dommerby, and T. Lau, “Hot water irrigation in the treatment of posterior epistaxis,” Ugeskrift for Laeger, vol. 158, no. 27, pp. 3932–3934, 1996.
[56]  S.-E. Stangerup and H. K. Thomsen, “Histological changes in the nasal mucosa after hot-water irrigation: an animal experimental study,” Rhinology, vol. 34, no. 1, pp. 14–17, 1996.
[57]  S. E. Stangerup, H. Dommerby, C. Siim, L. Kemp, and J. Stage, “New modification of hot-water irrigation in the treatment of posterior epistaxis,” Archives of Otolaryngology, vol. 125, no. 6, pp. 686–690, 1999.
[58]  C. H. Snyderman, H. Pant, R. L. Carrau, D. Prevedello, P. Gardner, and A. B. Kassam, “What are the limits of endoscopic sinus surgery? The expanded endonasal approach to the skull base,” Keio Journal of Medicine, vol. 58, no. 3, pp. 152–160, 2009.
[59]  J. T. Lee, D. B. Keschner, and D. W. Kennedy, “Endoscopic resection of juvenile nasopharyngeal angiofibroma,” Operative Techniques in Otolaryngology, vol. 21, no. 1, pp. 56–65, 2010.
[60]  J. W. Ruiz, S. Saint-Victor, B. Tessema, J. A. Eloy, and A. Anstead, “Coblation assisted endoscopic juvenile nasopharyngeal angiofibroma resection,” International Journal of Pediatric Otorhinolaryngology, vol. 76, no. 3, pp. 439–442, 2012.
[61]  L. Ye, X. Zhou, J. Li, and J. Jin, “Coblation-assisted endonasal endoscopic resection of juvenile nasopharyngeal angiofibroma,” Journal of Laryngology and Otology, vol. 125, no. 9, pp. 940–944, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133