全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Surgery  2012 

Computerized Decision Support System for Intraoperative Analysis of Margin Status in Breast Conservation Therapy

DOI: 10.5402/2012/546721

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Breast conservation therapy (BCT) is the standard treatment for breast cancer; however, 32–63% of procedures have a positive margin leading to secondary procedures. The standard of care to evaluate surgical margins is based on permanent section. Imprint cytology (IC) has been used to evaluate surgical samples but is limited by excessive cauterization thus requiring experienced cytopathologist for interpretation. An automated image screening process has been developed to detect cancerous cells from IC on cauterized margins. Methods. IC was prospectively performed on margins during lumpectomy operations for breast cancer in addition to permanent section on 127 patients. An 8-slide training subset and 8-slide testing subset were culled. H&E IC automated analysis, based on linear discriminant analysis, was compared to manual pathologist interpretation. Results. The most important descriptors, from highest to lowest performance, are nucleus color (23%), cytoplasm color (15%), shape (12%), grey intensity (9%), and local area (5%). There was 100% agreement between automated and manual interpretation of IC slides. Conclusion. Although limited by IC sampling variability, an automated system for accurate IC cancer cell identification system is demonstrated, with high correlation to manual analysis, even in the face of cauterization effects which supplement permanent section analysis. 1. Introduction Approximately 32–63% of breast conservation therapy surgeries result in positive margins [1]. To control local recurrence of disease, a negative margin status is required [2–5]. Therefore, a positive margin diagnosis may result in multiple reexcision surgeries, increased likelihood of complications, physical discomfort, emotional distress, and decreased cosmetic outcomes [1, 6]. Several techniques have been tested for the manual intraoperative evaluation of margins including gross examination [6–8], intraoperative ultrasound [8–12], frozen section analysis (FSA) [13–17], and imprint cytology (IC) [5, 18–21]. Herein we report on the feasibility of using automated IC analysis as a margin evaluation tool. IC is an alternative intraoperative technique to detect cancer cells at the margin surface. Following tumor excision, the sample surface is imprinted on glass slides while keeping track of the margin location [21, 22]. Cells on the margin surface are removed during imprinting by electrostatic and hydrophobic interactions with the glass slide which preferentially adsorbs epithelial and blood cells over adipose tissue [23]. The advantage of this technique is

References

[1]  J. E. Méndez, W. W. Lamorte, A. de las Morenas et al., “Influence of breast cancer margin assessment method on the rates of positive margins and residual carcinoma,” American Journal of Surgery, vol. 192, no. 4, pp. 538–540, 2006.
[2]  C. Dunne, J. P. Burke, M. Morrow, and M. R. Kell, “Effect of margin status on local recurrence after breast conservation and radiation therapy for ductal carcinoma in situ,” Journal of Clinical Oncology, vol. 27, no. 10, pp. 1615–1620, 2009.
[3]  V. S. Klimberg, S. Harms, and S. Korourian, “Assessing margin status,” Surgical Oncology, vol. 8, no. 2, pp. 77–84, 1999.
[4]  E. Obedian and B. G. Haffty, “Negative margin status improves local control in conservatively managed breast cancer patients,” Cancer Journal from Scientific American, vol. 6, no. 1, pp. 28–33, 2000.
[5]  C. E. Cox, M. Hyacinthe, R. J. Gonzalez et al., “Cytologic evaluation of lumpectomy margins in patients with ductal carcinoma in situ: clinical outcome,” Annals of Surgical Oncology, vol. 4, no. 8, pp. 644–649, 1997.
[6]  G. C. Balch, S. K. Mithani, J. F. Simpson, M. C. Kelley, J. Gwin, and K. Bland, “Accuracy of intraoperative gross examination of surgical margin status in women undergoing partial mastectomy for breast malignancy,” American Surgeon, vol. 71, no. 1, pp. 22–28, 2005.
[7]  A. Chagpar, T. Yen, A. Sahin et al., “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” American Journal of Surgery, vol. 186, no. 4, pp. 371–377, 2003.
[8]  R. Henry-Tillman, A. T. Johnson, L. F. Smith, and V. S. Klimberg, “Intraoperative ultrasound and other techniques to achieve negative margins,” Seminars in Surgical Oncology, vol. 20, no. 3, pp. 206–213, 2001.
[9]  M. M. Moore, L. A. Whitney, L. Cerilli et al., “Intraoperative ultrasound is associated with clear lumpectomy margins for palpable infiltrating ductal breast cancer,” Annals of Surgery, vol. 233, no. 6, pp. 761–768, 2001.
[10]  H. C. Snider and D. G. Morrison, “Intraoperative ultrasound localization of nonpalpable breast lesions,” Annals of Surgical Oncology, vol. 6, no. 3, pp. 308–314, 1999.
[11]  S. P. Harlow, D. N. Krag, S. E. Ames, and D. L. Weaver, “Intraoperative ultrasound localization to guide surgical excision of nonpalpable breast carcinoma,” Journal of the American College of Surgeons, vol. 189, no. 3, pp. 241–246, 1999.
[12]  K. M. Davis, C.-H. Hsu, M. E. Bouton, K. L. Wilhelmson, and I. K. Komenaka, “Intraoperative ultrasound can decrease the re-excision lumpectomy rate in patients with palpable breast cancers,” American Surgeon, vol. 77, no. 6, pp. 720–725, 2011.
[13]  N. Cabioglu, K. K. Hunt, A. A. Sahin et al., “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Annals of Surgical Oncology, vol. 14, no. 4, pp. 1458–1471, 2007.
[14]  J. C. Cendán, D. Coco, and E. M. Copeland, “Accuracy of intraoperative frozen-section analysis of breast cancer lumpectomy-bed margins,” Journal of the American College of Surgeons, vol. 201, no. 2, pp. 194–198, 2005.
[15]  T. P. Olson, J. Harter, A. Mu?oz, D. M. Mahvi, and T. M. Breslin, “Frozen section analysis for intraoperative margin assessment during breast-conserving surgery results in low rates of re-excision and local recurrence,” Annals of Surgical Oncology, vol. 14, no. 10, pp. 2953–2960, 2007.
[16]  E. R. Sauter, J. P. Hoffman, F. D. Ottery, et al., “Is frozen section analysis of reexcision lumpectomy margins worthwhile? Margin analysis in breast reexcisions,” Cancer, vol. 73, pp. 2607–2612, 1994.
[17]  S. Weber, F. K. Storm, J. Stitt, and D. M. Mahvi, “The role of frozen section analysis of margins during breast conservation surgery,” Cancer Journal from Scientific American, vol. 3, no. 5, pp. 273–277, 1997.
[18]  V. S. Klimberg, K. C. Westbrook, and S. Korourian, “Use of touch preps for diagnosis and evaluation of surgical margins in breast cancer,” Annals of Surgical Oncology, vol. 5, no. 3, pp. 220–226, 1998.
[19]  M. Bakhshandeh, S. O. Tutuncuoglu, G. Fischer, and S. Masood, “Use of imprint cytology for assessment of surgical margins in lumpectomy specimens of breast cancer patients,” Diagnostic Cytopathology, vol. 35, no. 10, pp. 656–659, 2007.
[20]  I. T. Rubio, S. Korourian, C. Cowan, D. N. Krag, M. Colvert, and V. S. Klimberg, “Use of touch preps for intraoperative diagnosis of sentinel lymph node metastases in breast cancer,” Annals of Surgical Oncology, vol. 5, no. 8, pp. 689–694, 1998.
[21]  A. J. Creager, J. A. Shaw, P. R. Young, and K. R. Geisinger, “Intraoperative evaluation of lumpectomy margins by imprint cytology with histologic correlation: a community hospital experience,” Archives of Pathology and Laboratory Medicine, vol. 126, no. 7, pp. 846–848, 2002.
[22]  C. E. Cox, N. N. Ku, D. S. Reintgen, H. M. Greenberg, S. V. Nicosia, and S. Wangensteen, “Touch preparation cytology of breast lumpectomy margins with histologic correlation,” Archives of Surgery, vol. 126, no. 4, pp. 490–493, 1991.
[23]  R. G. Pleijhuis, M. Graafland, J. De Vries, J. Bart, J. S. De Jong, and G. M. Van Dam, “Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions,” Annals of Surgical Oncology, vol. 16, no. 10, pp. 2717–2730, 2009.
[24]  U. Cavallaro and G. Christofori, “Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough,” Biochimica et Biophysica Acta, vol. 1552, no. 1, pp. 39–45, 2001.
[25]  E. C. McGary, D. Chelouche Lev, and M. Bar-Eli, “Cellular adhesion pathways and metastatic potential of human melanoma,” Cancer Biology and Therapy, vol. 1, no. 5, pp. 459–465, 2002.
[26]  W. G. Stetler-Stevenson, S. Aznavoorian, and L. A. Liotta, “Tumor cell interactions with the extracellular matrix during invasion and metastasis,” Annual Review of Cell Biology, vol. 9, pp. 541–573, 1993.
[27]  S. L. Blair, J. Wang-Rodriguez, M. J. Cortes-Mateos et al., “Enhanced touch preps improve the ease of interpretation of intraoperative breast cancer margins,” American Surgeon, vol. 73, no. 10, pp. 973–976, 2007.
[28]  F. J. Fleming, A. D. K. Hill, E. W. Mc Dermott, A. O'Doherty, N. J. O'Higgins, and C. M. Quinn, “Intraoperative margin assessment and re-excision rate in breast conserving surgery,” European Journal of Surgical Oncology, vol. 30, no. 3, pp. 233–237, 2004.
[29]  M. D. Abràmoff, P. J. Magalh?es, and S. J. Ram, “Image processing with imageJ,” Biophotonics International, vol. 11, no. 7, pp. 36–41, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133