Background. Multiple, simultaneous, acute cerebral infarcts in different arterial territories are usually secondary to embolic occlusion of multiple cerebral arteries. We observed, however, that no cardiac or aortic source could be found in many of these patients. We therefore undertook this study to attempt to identify other factors that may be important in the causation of these infarcts. Materials and Methods. We performed a five-year retrospective review of all patients with multiple, near simultaneous, acute cerebral infarcts detected on diffusion-weighted MRI scans. Results. We identified 78 patients with acute infarcts, in different cerebral arterial territories. We found a cardiac embolic source in 15 (19 percent) patients. Forty-one patients (53%) had no obvious cause for their infarcts after detailed cardiovascular and hematological evaluation. In 16 of these patients (20% of all 78 patients), all with a history of chronic hypertension who had multiple, acute, small (<2?cms), deep subcortical or superficial cortical infarcts (and most, 93%, with extensive evidence of chronic small vessel disease on MRI FLAIR images), blood pressure was low or normal on initial presentation (mean arterial pressure, MAP: 85 ± 11.4?mm?Hg). Analysis of the last prestroke blood pressure, within the previous 1 to 11 days available in 13 of 16 patients, revealed much higher BP (MAP: 113.6 ± 11.3?mm?Hg), indicating a mean drop of 25.1 percent (range 11 to 44 percent). Two weeks after the stroke, blood pressure had risen again to greater than 160/100?mm?Hg (MAP: 128.2 ± 14.3). Conclusion. Our study suggests that transient drop in blood pressure in high-risk hypertensive patients with severe, small vessel disease may sometimes result in small, cerebral infarcts. More research is needed to further clarify and confirm this possibility. 1. Introduction Embolism originating from the heart or artery-to-artery emboli from more proximal to distal smaller branches is responsible for most cases of cerebral infarction [1–4]. Decreased perfusion secondary to hemodynamic failure is a much less common cause of infarcts (<10% of patients) [5], limited to infarcts in the vulnerable border zone between the territory vascularized by large cerebral arteries in patients with severe ipsilateral carotid or other large artery stenosis [6]. A recent hypothesis seeks to combine these mechanisms with the proposal that hypoperfusion can lead to impaired clearance of emboli from occluded arteries [7]. Multiple, acute cerebral infarctions in different arterial territories, which refer in this
References
[1]
L. R. Caplan, “Brain embolism, revisited,” Neurology, vol. 43, no. 7, pp. 1281–1287, 1993.
[2]
L. R. Caplan, “Of birds and nests and brain emboli,” Revue Neurologique, vol. 147, no. 4, pp. 265–273, 1991.
[3]
C. Fieschi, C. Argentino, G. L. Lenzi, M. L. Sacchetti, D. Toni, and L. Bozzao, “Clinical and instrumental evaluation of patients with ischemic stroke within the first six hours,” Journal of the Neurological Sciences, vol. 91, no. 3, pp. 311–322, 1989.
[4]
N. Heye and J. Cervós-Navarro, “Microthromboemboli in acute infarcts: analysis of 40 autopsy cases,” Stroke, vol. 27, no. 3, pp. 431–434, 1996.
[5]
C. F. Bladin and B. R. Chambers, “Clinical features, pathogenesis, and computed tomographic characteristics of internal watershed infarction,” Stroke, vol. 24, no. 12, pp. 1925–1932, 1993.
[6]
H. Krapf, B. Widder, and M. Skalej, “Small rosarylike infarctions in the centrum ovale suggest hemodynamic failure,” American Journal of Neuroradiology, vol. 19, no. 8, pp. 1479–1484, 1998.
[7]
L. R. Caplan, S. W. Ka, S. Gao, and M. G. Hennerici, “Is hypoperfusion an important cause of strokes? If so, how?” Cerebrovascular Diseases, vol. 21, no. 3, pp. 145–153, 2006.
[8]
H. Ay, K. L. Furie, A. Singhal, W. S. Smith, A. G. Sorensen, and W. J. Koroshetz, “An evidence-based causative classification system for acute ischemic stroke,” Annals of Neurology, vol. 58, no. 5, pp. 688–697, 2005.
[9]
H. P. Adams, B. H. Bendixen, L. J. Kappelle et al., “Classification of subtype of acute ischemic stroke: definitions for use in a multicenter clinical trial,” Stroke, vol. 24, no. 1, pp. 35–41, 1993.
[10]
W. T. Longstreth, C. Bernick, T. A. Manolio, N. Bryan, C. A. Jungreis, and T. R. Price, “Lacunar infarcts defined by magnetic resonance imaging of 3660 elderly people: the cardiovascular health study,” Archives of Neurology, vol. 55, no. 9, pp. 1217–1225, 1998.
[11]
C. T. Hong, L. K. Tsai, and J. S. Jeng, “Patterns of acute cerebral infarcts in patients with active malignancy using diffusion-weighted imaging,” Cerebrovascular Diseases, vol. 28, no. 4, pp. 411–416, 2009.
[12]
J. Schmiedel, G. Gahn, R. Von Kummer, and H. Reichmann, “Cerebral vasculitis with multiple infarcts caused by Lyme disease,” Cerebrovascular Diseases, vol. 17, no. 1, pp. 79–80, 2004.
[13]
R. W. Asinger, M. L. Dyken, M. Fisher, R. G. Hart, and D. G. Sherman, “Cardiogenic brain embolism. The second report of the cerebral embolism task force,” Archives of Neurology, vol. 46, no. 7, pp. 727–743, 1989.
[14]
A. H. Cho, J. S. Kim, S. B. Jeon, S. U. Kwon, D. H. Lee, and D. W. Kang, “Mechanism of multiple infarcts in multiple cerebral circulations on diffusion-weighted imaging,” Journal of Neurology, vol. 254, no. 7, pp. 924–930, 2007.
[15]
K. Takahashi, S. Kobayashi, R. Matui, S. Yamaguchi, and K. Yamashita, “The differences of clinical parameters between small multiple ischemic lesions and single lesion detected by diffusion-weighted MRI,” Acta Neurologica Scandinavica, vol. 106, no. 1, pp. 24–29, 2002.
[16]
A. E. Baird, K. O. L?vblad, G. Schlaug, R. R. Edelman, and S. Warach, “Multiple acute stroke syndrome: marker of embolic disease?” Neurology, vol. 54, no. 3, pp. 674–678, 2000.
[17]
J. Bogousslavsky, A. Bernasconi, and E. Kumral, “Acute multiple infarction involving the anterior circulation,” Archives of Neurology, vol. 53, no. 1, pp. 50–57, 1996.
[18]
L. H. Bonati, P. A. Lyrer, S. G. Wetzel, A. J. Steck, and S. T. Engelter, “Diffusion weighted imaging, apparent diffusion coefficient maps and stroke etiology,” Journal of Neurology, vol. 252, no. 11, pp. 1387–1393, 2005.
[19]
J. K. Roh, D. W. Kang, S. H. Lee, B. W. Yoon, and K. H. Chang, “Significance of acute multiple brain infarction on diffusion-weighted imaging,” Stroke, vol. 31, no. 3, pp. 688–694, 2000.
[20]
D. W. Kang, J. A. Chalela, M. A. Ezzeddine, and S. Warach, “Association of ischemic lesion patterns on early diffusion-weighted imaging with TOAST stroke subtypes,” Archives of Neurology, vol. 60, no. 12, pp. 1730–1734, 2003.
[21]
V. Caso, K. Budak, D. Georgiadis, B. Schuknecht, and R. W. Baumgartner, “Clinical significance of detection of multiple acute brain infarcts on diffusion weighted magnetic resonance imaging,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 4, pp. 514–518, 2005.
[22]
H. Ay, J. Oliveira-Filho, F. S. Buonanno et al., “Diffusion-weighted imaging identifies a subset of lacunar infarction associated with embolic source,” Stroke, vol. 30, no. 12, pp. 2644–2650, 1999.
[23]
R. L. Macdonald, A. Kowalczuk, L. Johns, and W. I. Rosenblum, “Emboli enter penetrating arteries of monkey brain in relation to their size,” Stroke, vol. 26, no. 7, pp. 1247–1251, 1995.
[24]
D. Chowdhury, J. M. Wardlaw, and M. S. Dennis, “Are multiple acute small subcortical infarctions caused by embolic mechanisms?” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 10, pp. 1416–1420, 2004.
[25]
D. C. Good, S. Frank, S. Verhulst, and B. Sharma, “Cardiac abnormalities in stroke patients with negative arteriograms,” Stroke, vol. 17, no. 1, pp. 6–11, 1986.
[26]
R. J. Lee, T. Bartzokis, T. K. Yeoh, H. R. Grogin, D. Choi, and I. Schnittger, “Enhanced detection of intracardiac sources of cerebral emboli by transesophageal echocardiography,” Stroke, vol. 22, no. 6, pp. 734–739, 1991.
[27]
I. Meissner, B. K. Khandheria, S. G. Sheps et al., “Atherosclerosis of the aorta: risk factor, risk marker, or innocent bystander?: A prospective population-based transesophageal echocardiography study,” Journal of the American College of Cardiology, vol. 44, no. 5, pp. 1018–1024, 2004.
[28]
L. Morfis, R. S. Schwartz, R. Poulos, and L. G. Howes, “Blood pressure changes in acute cerebral infarction and hemorrhage,” Stroke, vol. 28, no. 7, pp. 1401–1405, 1997.
[29]
D. Rizzoni, C. De Ciuceis, E. Porteri et al., “Altered structure of small cerebral arteries in patients with essential hypertension,” Journal of Hypertension, vol. 27, no. 4, pp. 838–845, 2009.
[30]
S. L. M. Bakker, F. E. De Leeuw, J. C. De Groot, A. Hofman, P. J. Koudstaal, and M. M. B. Breteler, “Cerebral vasomotor reactivity and cerebral white matter lesions in the elderly,” Neurology, vol. 52, no. 3, pp. 578–583, 1999.
[31]
J. F. Schmidt, G. Waldemar, S. Vorstrup, A. R. Andersen, F. Gjerris, and O. B. Paulson, “Computerized analysis of cerebral blood flow autoregulation in humans: validation of a method for pharmacologic studies,” Journal of Cardiovascular Pharmacology, vol. 15, no. 6, pp. 983–988, 1990.
[32]
D. M. Moody, M. A. Bell, and V. R. Challa, “Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study,” American Journal of Neuroradiology, vol. 11, no. 3, pp. 431–439, 1990.
[33]
E. Scharrer, “Arteries and veins in the mammalian brain,” The Anatomical Record, vol. 3, pp. 173–196, 1940.
[34]
A. Torvik and K. Skullerud, “How often are brain infarcts caused by hypotensive episodes?” Stroke, vol. 7, no. 3, pp. 255–257, 1976.
[35]
J. H. Adams, J. B. Brierley, R. C. R. Connor, and C. S. Treip, “The effects of systemic hypotension upon the human brain. Clinical and neuropathological observations in 11 cases,” Brain, vol. 89, no. 2, pp. 235–268, 1966.
[36]
G. Reboldi, G. Gentile, F. Angeli, G. Ambrosio, G. Mancia, and P. Verdecchia, “Effects of intensive blood pressure reduction on myocardial infarction and stroke in diabetes: a meta-analysis in 73 913 patients,” Journal of Hypertension, vol. 29, no. 7, pp. 1253–1269, 2011.
[37]
S. Bangalore, S. Kumar, I. Lobach, and F. H. Messerli, “Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and bayesian random-effects meta-analyses of randomized trials,” Circulation, vol. 123, no. 24, pp. 2799–2810, 2011.
[38]
B. Ovbiagele, H. C. Diener, S. Yusuf et al., “Level of systolic blood pressure within the normal range and risk of recurrent stroke,” The Journal of the American Medical Association, vol. 306, no. 19, pp. 2137–2144, 2011.
[39]
W. C. Cushman, G. W. Evans, R. P. Byington et al., “Effects of intensive blood-pressure control in type 2 diabetes mellitus,” The New England Journal of Medicine, vol. 362, no. 17, pp. 1575–1585, 2010.
[40]
R. M. Cooper-DeHoff, Y. Gong, E. M. Handberg et al., “Tight blood pressure control and cardiovascular outcomes among hypertensive patients with diabetes and coronary artery disease,” The Journal of the American Medical Association, vol. 304, no. 1, pp. 61–68, 2010.
[41]
P. Amarenco, J. Bogousslavsky, L. R. Caplan, G. A. Donnan, and M. G. Hennerici, “New approach to stroke subtyping: the A-S-C-O (phenotypic) classification of stroke,” Cerebrovascular Diseases, vol. 27, no. 5, pp. 502–508, 2009.