全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols

DOI: 10.1155/2013/813563

Full-Text   Cite this paper   Add to My Lib

Abstract:

Polyphenols are the principal compounds associated with health benefic effects of wine consumption and in general are characterized by antioxidant activities. Mass spectrometry is shown to play a very important role in the research of polyphenols in grape and wine and for the quality control of products. The soft ionization of LC/MS makes these techniques suitable to study the structures of polyphenols and anthocyanins in grape extracts and to characterize polyphenolic derivatives formed in wines and correlated to the sensorial characteristics of the product. The coupling of the several MS techniques presented here is shown to be highly effective in structural characterization of the large number of low and high molecular weight polyphenols in grape and wine and also can be highly effective in the study of grape metabolomics. 1. Principal Polyphenols of Grape and Wine Polyphenols are the principal compounds associated to health benefic effects of wine consumption. A French epidemiological study performed in the end of 1970s reported that in France, despite the high consumption of foods rich in saturated fatty acids, the incidence of mortality from cardiovascular diseases was lower than that in other comparable countries. This phenomenon was called “the French paradox” and was related to the beneficial effects of red wine consumption [1]. In general; polyphenols have antioxidant activities. Their activity as peroxyl radical scavengers and in the formation of complexes with metals (Cu, Fe, etc.) has been shown by in vitro studies. Moreover, the ability of polyphenols to cross the intestinal wall of mammals confers their biological properties. Flavan-3-ols are one of the principal classes of grape polyphenols which include (+)-catechin and (?)-epicatechin, and their oligomers called procyanidins, proanthocyanidins, and prodelphinidins. B-type and A-type procyanidins and proanthocyanidins (the latter are condensed tannins) are present in the grape skin and seeds; tannins are mainly present in seeds, and prodelphinidins are polymeric tannins composed of gallocatechin units (structures in Figure 1). During winemaking the condensed (or nonhydrolyzable) tannins are transferred to the wine and contribute strongly to the sensorial characteristic of the product. In the mouth, the formation of complexes between tannins and saliva proteins confers to the wine the sensorial characteristic of astringency: bitterness and astringency of wine is linked to tannins structure, in particular galloylation degree (DG) and polymerization degree (DP) of flavan-3-ols [2, 3].

References

[1]  S. Renaud and M. De Lorgeril, “Wine, alcohol, platelets, and the French paradox for coronary heart disease,” The Lancet, vol. 339, no. 8808, pp. 1523–1526, 1992.
[2]  V. Cheynier and J. Rigaud, “HPLC separation and characterization of flavonols in the skin of Vitis vinifera var. Cinsault,” American Journal of Enology and Viticulture, vol. 37, no. 4, pp. 248–252, 1986.
[3]  S. Vidal, L. Francis, S. Guyot et al., “The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium,” Journal of the Science of Food and Agriculture, vol. 83, no. 6, pp. 564–573, 2003.
[4]  R. Flamini, “Mass spectrometry in grape and wine chemistry. Part I: polyphenols,” Mass Spectrometry Reviews, vol. 22, no. 4, pp. 218–250, 2003.
[5]  N. Castillo-Mu?oz, S. Gómez-Alonso, E. García-Romero, and I. Hermosn-Gutiérrez, “Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines,” Journal of Agricultural and Food Chemistry, vol. 55, no. 3, pp. 992–1002, 2007.
[6]  N. Castillo-Mu?oz, S. Gómez-Alonso, E. García-Romero, M. V. Gómez, A. H. Velders, and I. Hermosín-Gutiérrez, “Flavonol 3-O-glycosides series of Vitis vinifera Cv. Petit Verdot red wine grapes,” Journal of Agricultural and Food Chemistry, vol. 57, no. 1, pp. 209–219, 2009.
[7]  M. Jang, L. Cai, G. O. Udeani et al., “Cancer chemopreventive activity of resveratrol, a natural product derived from grapes,” Science, vol. 275, no. 5297, pp. 218–220, 1997.
[8]  L. M. Hung, J. K. Chen, S. S. Huang, R. S. Lee, and M. J. Su, “Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes,” Cardiovascular Research, vol. 47, no. 3, pp. 549–555, 2000.
[9]  E. N. Frankel, A. L. Waterhouse, and J. E. Kinsella, “Inhibition of human LDL oxidation by resveratrol,” The Lancet, vol. 341, no. 8852, pp. 1103–1104, 1993.
[10]  L. Frémont, L. Belguendouz, and S. Delpal, “Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids,” Life Sciences, vol. 64, no. 26, pp. 2511–2521, 1999.
[11]  A. A. E. Bertelli, L. Giovannini, D. Giannessi et al., “Antiplatelet activity of synthetic and natural resveratrol in red wine,” International Journal of Tissue Reactions, vol. 17, no. 1, pp. 1–3, 1995.
[12]  C. R. Pace-Asciak, S. Hahn, E. P. Diamandis, G. Soleas, and D. M. Goldberg, “The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease,” Clinica Chimica Acta, vol. 235, no. 2, pp. 207–219, 1995.
[13]  L. Bavaresco, F. Mattivi, M. De Rosso, and R. Flamini, “Effects of elicitors, viticultural factors, and enological practices on resveratrol and stilbenes in grapevine and wine,” Mini-Reviews in Medicinal Chemistry, vol. 12, no. 13, pp. 1366–1381, 2012.
[14]  L. Bavaresco, E. Cantù, M. Fregoni, and M. Trevisan, “Constitutive stilbene contents of grapevine cluster stems as potential source of resveratrol in wine,” Vitis, vol. 36, no. 3, pp. 115–118, 1997.
[15]  P. Waffo-Teguo, D. Lee, M. Cuendet, J. M. M?rillon, J. M. Pezzuto, and A. Douglas Kinghorn, “Two new stilbene dimer glucosides from grape (Vitis vinifera) cell cultures,” Journal of Natural Products, vol. 64, no. 1, pp. 136–138, 2001.
[16]  R. H. Cichewicz, S. A. Kouzi, and M. T. Hamann, “Dimerization of resveratrol by the grapevine pathogen Botrytis cinerea,” Journal of Natural Products, vol. 63, no. 1, pp. 29–33, 2000.
[17]  M. Sbaghi, P. Jeandet, R. Bessis, and P. Leroux, “Degradation of stilbene-type phytoalexins in relation to the pathogenicity of Botrytis cinerea to grapevines,” Plant Pathology, vol. 45, no. 1, pp. 139–144, 1996.
[18]  T. C. Somers, “The polymeric nature of wine pigments,” Phytochemistry, vol. 10, no. 9, pp. 2175–2186, 1971.
[19]  C. F. Timberlake and P. Bridle, “Interactions between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines,” American Journal of Enology and Viticulture, vol. 27, no. 3, pp. 97–105, 1976.
[20]  H. Fulcrand, C. Benabdeljalil, J. Rigaud, V. Cheynier, and M. Moutounet, “A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins,” Phytochemistry, vol. 47, no. 7, pp. 1401–1407, 1998.
[21]  Y. Hayasaka and R. E. Asenstorfer, “Screening for potential pigments derived from anthocyanins in red wine using nanoelectrospray tandem mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 50, no. 4, pp. 756–761, 2002.
[22]  C. Alcalde-Eon, M. T. Escribano-Bailón, C. Santos-Buelga, and J. C. Rivas-Gonzalo, “Separation of pyranoanthocyanins from red wine by column chromatography,” Analytica Chimica Acta, vol. 513, no. 1, pp. 305–318, 2004.
[23]  J. L. Gómez-Ariza, T. García-Barrera, and F. Lorenzo, “Anthocyanins profile as fingerprint of wines using atmospheric pressure photoionisation coupled to quadrupole time-of-flight mass spectrometry,” Analytica Chimica Acta, vol. 570, no. 1, pp. 101–108, 2006.
[24]  H. Wang, E. J. Race, and A. J. Shrikhande, “Characterization of anthocyanins in grape juices by ion trap liquid chromatography-mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 51, no. 7, pp. 1839–1844, 2003.
[25]  L. Stella, M. De Rosso, A. Panighel, A. Dalla Vedova, R. Flamini, and P. Traldi, “Collisionally induced fragmentation of [M-H]- species of resveratrol and piceatannol investigated by deuterium labelling and accurate mass measurements,” Rapid Communications in Mass Spectrometry, vol. 22, no. 23, pp. 3867–3872, 2008.
[26]  M. E. Camire, A. Chaovanalikit, M. P. Dougherty, and J. Briggs, “Blueberry and grape anthocyanins as breakfast cereal colorants,” Journal of Food Science, vol. 67, no. 1, pp. 438–441, 2002.
[27]  J. He and M. M. Giusti, “Anthocyanins: natural colorants with health-promoting properties,” Annual Review of Food Science and Technology, vol. 1, pp. 163–187, 2010.
[28]  V. Hong and R. E. Wrolstad, “Characterization of anthocyanin-containing colorants and fruit juices by HPLC/photodiode array detection,” Journal of Agricultural and Food Chemistry, vol. 38, no. 3, pp. 698–708, 1990.
[29]  A. Versari, R. B. Boulton, and G. P. Parpinello, “A comparison of analytical methods for measuring the color components of red wines,” Food Chemistry, vol. 106, no. 1, pp. 397–402, 2008.
[30]  C. Alcalde-Eon, M. T. Escribano-Bailón, C. Santos-Buelga, and J. C. Rivas-Gonzalo, “Changes in the detailed pigment composition of red wine during maturity and ageing: a comprehensive study,” Analytica Chimica Acta, vol. 563, no. 1-2, pp. 238–254, 2006.
[31]  C. Boido, F. Alcalde-Eon, E. Carrau, E. Dellacassa, and J. C. Rivas-Gonzalo, “Aging effect on the pigment composition and color of Vitis vinifera L. cv. Tannat wines. Contribution of the main pigment families to wine color,” Journal of Agricultural and Food Chemistry, vol. 54, pp. 6692–6704, 2006.
[32]  J. Bakker and C. F. Timberlake, “Isolation, identification, and characterization of new color-stable anthocyanins occurring in some red wines,” Journal of Agricultural and Food Chemistry, vol. 45, no. 1, pp. 35–43, 1997.
[33]  R. E. Asenstorfer, Y. Hayasaka, and G. P. Jones, “Isolation and structures of oligomeric wine pigments by bisulfite-mediated ion-exchange chromatography,” Journal of Agricultural and Food Chemistry, vol. 49, no. 12, pp. 5957–5963, 2001.
[34]  M. Schwarz, T. C. Wabnitz, and P. Winterhalter, “Pathway leading to the formation of anthocyanin-vinylphenol adducts and related pigments in red wines,” Journal of Agricultural and Food Chemistry, vol. 51, no. 12, pp. 3682–3687, 2003.
[35]  A. Morata, F. Calderón, M. C. González, M. C. Gómez-Cordovés, and J. A. Suárez, “Formation of the highly stable pyranoanthocyanins (vitisins A and B) in red wines by the addition of pyruvic acid and acetaldehyde,” Food Chemistry, vol. 100, no. 3, pp. 1144–1152, 2007.
[36]  S. Pati, I. Losito, G. Gambacorta, E. La Notte, F. Palmisano, and P. G. Zambonin, “Simultaneous separation and identification of oligomeric procyanidins and anthocyanin-derived pigments in raw red wine by HPLC-UV-ESI-MSn,” Journal of Mass Spectrometry, vol. 41, no. 7, pp. 861–871, 2006.
[37]  W. M. A. Niessen and A. P. Tinke, “Liquid chromatography-mass spectrometry. General principles and instrumentation,” Journal of Chromatography A, vol. 703, no. 1-2, pp. 37–57, 1995.
[38]  E. de Hoffmann, “Tandem mass spectrometry: a primer,” Journal of Mass Spectrometry, vol. 31, no. 2, pp. 125–137, 1996.
[39]  J. Abian, “The coupling of gas and liquid chromatography with mass spectrometry,” Journal of Mass Spectrometry, vol. 34, no. 3, pp. 157–168, 1999.
[40]  R. Flamini, A. Dalla Vedova, D. Cancian, A. Panighel, and M. De Rosso, “GC/MS-positive ion chemical ionization and MS/MS study of volatile benzene compounds in five different woods used in barrel making,” Journal of Mass Spectrometry, vol. 42, no. 5, pp. 641–646, 2007.
[41]  H. J. Li and M. L. Deinzer, “Tandem mass spectrometry for sequencing proanthocyanidins,” Analytical Chemistry, vol. 79, no. 4, pp. 1739–1748, 2007.
[42]  M. D. Rosso, A. Panighel, A. D. Vedova, L. Stella, and R. Flamini, “Changes in chemical composition of a red wine aged in acacia, cherry, chestnut, mulberry, and oak wood barrels,” Journal of Agricultural and Food Chemistry, vol. 57, no. 5, pp. 1915–1920, 2009.
[43]  B. Sun, M. C. Leandro, V. de Freitas, and M. I. Spranger, “Fractionation of red wine polyphenols by solid-phase extraction and liquid chromatography,” Journal of Chromatography A, vol. 1128, no. 1-2, pp. 27–38, 2006.
[44]  S. González-Manzano, C. Santos-Buelga, J. J. Pérez-Alonso, J. C. Rivas-Gonzalo, and M. T. Escribano-Bailón, “Characterization of the mean degree of polymerization of proanthocyanidins in red wines using liquid chromatography-mass spectrometry (LC-MS),” Journal of Agricultural and Food Chemistry, vol. 54, no. 12, pp. 4326–4332, 2006.
[45]  B. Gabetta, N. Fuzzati, A. Griffini et al., “Characterization of proanthocyanidins from grape seeds,” Fitoterapia, vol. 71, no. 2, pp. 162–175, 2000.
[46]  S. A. Lazarus, G. E. Adamson, J. F. Hammerstone, and H. H. Schmitz, “High-performance liquid chromatography/mass spectrometry analysis of proanthocyanidins in foods and beverages,” Journal of Agricultural and Food Chemistry, vol. 47, no. 9, pp. 3693–3701, 1999.
[47]  V. Nú?ez, C. Gómez-Cordovés, B. Bartolomé, Y. J. Hong, and A. E. Mitchell, “Non-galloylated and galloylated proanthocyanidin oligomers in grape seeds from Vitus vinifera L. cv. Graciano, Tempranillo and Cabernet Sauvignon,” Journal of the Science of Food and Agriculture, vol. 86, no. 6, pp. 915–921, 2006.
[48]  Q. Wu, M. Wang, and J. E. Simon, “Determination of proanthocyanidins in fresh grapes and grape products using liquid chromatography with mass spectrometric detection,” Rapid Communications in Mass Spectrometry, vol. 19, no. 14, pp. 2062–2068, 2005.
[49]  R. Flamini, M. Rosso De, A. Smaniotto et al., “Fast analysis of isobaric grape anthocyanins by chip-liquid chromatography/mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 23, no. 18, pp. 2891–2896, 2009.
[50]  Y. Hayasaka, E. J. Waters, V. Cheynier, M. J. Herderich, and S. Vidal, “Characterization of proanthocyanidins in grape seeds using electrospray mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 17, no. 1, pp. 9–16, 2003.
[51]  V. Cheynier, T. Doco, H. Fulcrand et al., “ESI-MS analysis of polyphenolic oligomers and polymers,” Analusis, vol. 25, no. 8, pp. M32–M37, 1997.
[52]  C. P. Passos, S. M. Cardoso, M. R. M. Domingues, P. Domingues, C. M. Silva, and M. A. Coimbra, “Evidence for galloylated type-A procyanidins in grape seeds,” Food Chemistry, vol. 105, no. 4, pp. 1457–1467, 2007.
[53]  A. Delcambre and C. Saucier, “Identification of new flavan-3-ol monoglycosides by UHPLC-ESI-Q-TOF in grapes and wine,” Journal of Mass Spectrometry, vol. 47, no. 6, pp. 727–736, 2012.
[54]  M. Monagas, R. Suárez, C. Gómez-Cordovés, and B. Bartolomé, “Simultaneous determination of nonanthocyanin phenolic compounds in red wines by HPLC-DAD/ESI-MS,” American Journal of Enology and Viticulture, vol. 56, no. 2, pp. 139–147, 2005.
[55]  H. Fulcrand, S. Remy, J. M. Souquet, V. Cheynier, and M. Moutounet, “Study of wine tannin oligomers by on-line liquid chromatography electrospray ionization mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 47, no. 3, pp. 1023–1028, 1999.
[56]  S. Vidal, E. Meudec, V. Cheynier, G. Skouroumounis, and Y. Hayasaka, “Mass spectrometric evidence for the existence of oligomeric anthocyanins in grape skins,” Journal of Agricultural and Food Chemistry, vol. 52, no. 23, pp. 7144–7151, 2004.
[57]  I. I. Rockenbach, E. Junfer, C. Ritter et al., “Characterization of flavan-3-ols in seeds of grape pomace by CE, HPLC-DAD-MSn and LC-ESI-FTICR-MS,” Food Research International, vol. 48, no. 2, pp. 845–855, 2012.
[58]  M. De Rosso, L. Tonidandel, R. Larcher et al., “Study of anthocyanic profiles of twenty-one hybrid grape varieties by liquid chromatography and precursor-Ion mass spectrometry,” Analytica Chimica Acta, vol. 732, pp. 120–129, 2012.
[59]  S. Pati, M. T. Liberatore, G. Gambacorta, D. Antonacci, and E. La Notte, “Rapid screening for anthocyanins and anthocyanin dimers in crude grape extracts by high performance liquid chromatography coupled with diode array detection and tandem mass spectrometry,” Journal of Chromatography A, vol. 1216, no. 18, pp. 3864–3868, 2009.
[60]  C. Alcalde-Eon, M. T. Escribano-Bailón, C. Santos-Buelga, and J. C. Rivas-Gonzalo, “Identification of dimeric anthocyanins and new oligomeric pigments in red wine by means of HPLC-DAD-ESI/MSn,” Journal of Mass Spectrometry, vol. 42, no. 6, pp. 735–748, 2007.
[61]  L. Hartmanova, V. Ranc, B. Papouskova, P. Bednar, V. Havlicek, and K. Lemr, “Fast profiling of anthocyanins in wine by desorption nano-electrospray ionization mass spectrometry,” Journal of Chromatography A, vol. 1217, no. 25, pp. 4223–4228, 2010.
[62]  B. Sun, T. A. Fernandes, and M. I. Spranger, “A new class of anthocyanin-procyanidin condensation products detected in red wine by electrospray ionization multi-stage mass spectrometry analysis,” Rapid Communications in Mass Spectrometry, vol. 24, no. 3, pp. 254–260, 2010.
[63]  B. Papou?ková, P. Bedná?, K. Hron et al., “Advanced liquid chromatography/mass spectrometry profiling of anthocyanins in relation to set of red wine varieties certified in Czech Republic,” Journal of Chromatography A, vol. 1218, no. 42, pp. 7581–7591, 2011.
[64]  E. Revilla, J. M. Ryan, and G. Martín-Ortega, “Comparison of several procedures used for the extraction of anthocyanins from red grapes,” Journal of Agricultural and Food Chemistry, vol. 46, no. 11, pp. 4592–4597, 1998.
[65]  L. Gao, B. Girard, G. Mazza, and A. G. Reynolds, “Changes in anthocyanins and color characteristics of Pinot Noir during different vinification processes,” Journal of Agricultural and Food Chemistry, vol. 45, no. 6, pp. 2003–2008, 1997.
[66]  D. Favretto and R. Flamini, “Application of electrospray ionization mass spectrometry to the study of grape anthocyanins,” American Journal of Enology and Viticulture, vol. 51, no. 1, pp. 55–64, 2000.
[67]  E. Salas, V. Atanasova, C. Poncet-Legrand, E. Meudec, J. P. Mazauric, and V. Cheynier, “Demonstration of the occurrence of flavanol-anthocyanin adducts in wine and in model solutions,” Analytica Chimica Acta, vol. 513, no. 1, pp. 325–332, 2004.
[68]  B. Sun, C. P. Reis Santos, M. C. Leandro, V. De Freitas, and M. I. Spranger, “High-performance liquid chromatography/electrospray ionization mass spectrometric characterization of new products formed by the reaction between flavanols and malvidin 3-glucoside in the presence of acetaldehyde,” Rapid Communications in Mass Spectrometry, vol. 21, no. 14, pp. 2227–2236, 2007.
[69]  P. Mazzuca, P. Ferranti, G. Picariello, L. Chianese, and F. Addeo, “Mass spectrometry in the study of anthocyanins and their derivatives: differentiation of Vitis vinifera and hybrid grapes by liquid chromatography/electrospray ionization mass spectrometry and tandem mass spectrometry,” Journal of Mass Spectrometry, vol. 40, no. 1, pp. 83–90, 2005.
[70]  R. Flamini, F. Agnolin, R. Seraglia et al., “A fast and selective method for anthocyanic profiling of red wines by direct-infusion pneumatic spray mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 26, no. 3, pp. 355–362, 2012.
[71]  S. Vidal, L. Francis, A. Noble, M. Kwiatkowski, V. Cheynier, and E. Waters, “Taste and mouth-feel properties of different types of tannin-like polyphenolic compounds and anthocyanins in wine,” Analytica Chimica Acta, vol. 513, no. 1, pp. 57–65, 2004.
[72]  C. Dufour and I. Sauvaitre, “Interactions between anthocyanins and aroma substances in a model system. Effect on the flavor of grape-derived beverages,” Journal of Agricultural and Food Chemistry, vol. 48, no. 5, pp. 1784–1788, 2000.
[73]  M. Garcia-Alonso, G. Rimbach, M. Sasai et al., “Electron spin resonance spectroscopy studies on the free radical scavenging activity of wine anthocyanins and pyranoanthocyanins,” Molecular Nutrition and Food Research, vol. 49, no. 12, pp. 1112–1119, 2005.
[74]  I. Tedesco, G. Luigi Russo, F. Nazzaro, M. Russo, and R. Palumbo, “Antioxidant effect of red wine anthocyanins in normal and catalase-inactive human erythrocytes,” Journal of Nutritional Biochemistry, vol. 12, no. 9, pp. 505–511, 2001.
[75]  R. Flamini and D. Tomasi, “The anthocyanin content in berries of the hybrid grape cultivars Clinton and Isabella,” Vitis, vol. 39, no. 2, pp. 79–81, 2000.
[76]  E. Hebrero, C. Garcia-Rodriguez, C. Santos-Buelga, and J. C. Rivas-Gonzalo, “Analysis of anthocyanins by high performance liquid chromatography-diode array spectroscopy in a hybrid grape variety (vitis vinifera x vitis berlandieri 41b),” American Journal of Enology and Viticulture, vol. 40, pp. 283–291, 1989.
[77]  S. L. Nixdorf and I. Hermosín-Gutiérrez, “Brazilian red wines made from the hybrid grape cultivar Isabel: phenolic composition and antioxidant capacity,” Analytica Chimica Acta, vol. 659, no. 1-2, pp. 208–215, 2010.
[78]  F. Mattivi, R. Guzzon, U. Vrhovsek, M. Stefanini, and R. Velasco, “Metabolite profiling of grape: flavonols and anthocyanins,” Journal of Agricultural and Food Chemistry, vol. 54, no. 20, pp. 7692–7702, 2006.
[79]  R. Di Stefano, “Metodi chimici nella caratterizzazione varietale,” Rivista di Viticoltura e di Enologia, vol. 1, pp. 51–56, 1996.
[80]  Q. Tian, M. M. Giusti, G. D. Stoner, and S. J. Schwartz, “Screening for anthocyanins using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with precursor-ion analysis, product-ion analysis, common-neutral-loss analysis, and selected reaction monitoring,” Journal of Chromatography A, vol. 1091, no. 1-2, pp. 72–82, 2005.
[81]  I. J. Ko?ir, B. Lapornik, S. Andren?ek, A. G. Wondra, U. Vrhov?ek, and J. Kidri?, “Identification of anthocyanins in wines by liquid chromatography, liquid chromatography-mass spectrometry and nuclear magnetic resonance,” Analytica Chimica Acta, vol. 513, no. 1, pp. 277–282, 2004.
[82]  M. Monagas, V. Nú?ez, B. Bartolomé, and C. Gómez-Cordovés, “Anthocyanin-derived pigments in Graciano, Tempranillo, and Cabernet Sauvignon wines produced in Spain,” American Journal of Enology and Viticulture, vol. 54, no. 3, pp. 163–169, 2003.
[83]  P. Kebarle and U. H. Verkcerk, “Electrospray: from Ions in solution to Ions in the gas phase, what we know now,” Mass Spectrometry Reviews, vol. 28, no. 6, pp. 898–917, 2009.
[84]  S. Crotti, R. Seraglia, and P. Traldi, “Some thoughts on electrospray ionization mechanisms,” European Journal of Mass Spectrometry, vol. 17, no. 2, pp. 85–100, 2011.
[85]  P. Sarni-Manchado, H. Fulcrand, J. M. Souquet, V. Cheynier, and M. Moutounet, “Stability and color of unreported wine anthocyanin-derived pigments,” Journal of Food Science, vol. 61, no. 5, pp. 938–941, 1996.
[86]  M. Karas, U. Bahr, and U. Gie?mann, “Matrix-assisted laser desorption ionization mass spectrometry,” Mass Spectrometry Reviews, vol. 10, no. 5, pp. 335–357, 1991.
[87]  A. E. Ashcroft, “Protein and peptide identification: the r?le of mass spectrometry in proteomics,” Natural Product Reports, vol. 20, no. 2, pp. 202–215, 2003.
[88]  Y. Yang and M. Chien, “Characterization of grape procyanidins using high-performance liquid chromatography/mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 48, no. 9, pp. 3990–3996, 2000.
[89]  C. G. Krueger, N. C. Dopke, P. M. Treichel, J. Folts, and J. D. Reed, “Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of polygalloyl polyflavan-3-ols in grape seed extract,” Journal of Agricultural and Food Chemistry, vol. 48, no. 5, pp. 1663–1667, 2000.
[90]  N. Vivas, M. F. Nonier, and N. Vivas De Gaulejac, “Structural characterization and analytical differentiation of grape seeds, skins, steams and Quebracho tannins,” Bulletin de L'OIV, vol. 77, no. 883-884, pp. 643–659, 2004.
[91]  N. Vivas, M. F. Nonier, N. V ivas De Gaulejac, C. Absalon, A. Bertrand, and M. Mirabel, “Differentiation of proanthocyanidin tannins from seeds, skins and stems of grapes (Vitis vinifera) and heartwood of Quebracho (Schinopsis balansae) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and thioacidolysis/liquid chromatography/electrospray ionization mass spectrometry,” Analytica Chimica Acta, vol. 513, no. 1, pp. 247–256, 2004.
[92]  H. A. Weber, A. E. Hodges, J. R. Guthrie et al., “Comparison of proanthocyanidins in commercial antioxidants: grape seed and pine bark extracts,” Journal of Agricultural and Food Chemistry, vol. 55, no. 1, pp. 148–156, 2007.
[93]  M. F. Nonier, C. Absalon, N. Vivas, and N. Vivas De Gaulejac, “Application of off-line size-exclusion chromatographic fractionation-matrix assisted laser desorption ionization time of flight mass spectrometry for proanthocyanidin characterization,” Journal of Chromatography A, vol. 1033, no. 2, pp. 291–297, 2004.
[94]  L. Mattoli, F. Cangi, A. Maidecchi et al., “Metabolomic fingerprinting of plant extracts,” Journal of Mass Spectrometry, vol. 41, no. 12, pp. 1534–1545, 2006.
[95]  P. Arapitsas, M. Scholz, U. Vrhovsek et al., “A metabolomic approach to the study of wine micro-oxygenation,” PLoS ONE, vol. 7, no. 5, Article ID e37783, 2012.
[96]  A. Cuadros-Inostroza, P. Giavalisco, J. Hummel, A. Eckardt, L. Willmitzer, and H. Pe?a-Cortés, “Discrimination of wine attributes by metabolome analysis,” Analytical Chemistry, vol. 82, no. 9, pp. 3573–3580, 2010.
[97]  L. Vaclavik, O. Lacina, J. Hajslova, and J. Zweigenbaum, “The use of high performance liquid chromatography-quadrupole time-of-flight mass spectrometry coupled to advanced data mining and chemometric tools for discrimination and classification of red wines according to their variety,” Analytica Chimica Acta, vol. 685, no. 1, pp. 45–51, 2011.
[98]  A. Carpentieri, G. Marino, and A. Amoresano, “Rapid fingerprinting of red wines by MALDI mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 389, no. 3, pp. 969–982, 2007.
[99]  H. Fulcrand, C. Mané, S. Preys et al., “Direct mass spectrometry approaches to characterize polyphenol composition of complex samples,” Phytochemistry, vol. 69, no. 18, pp. 3131–3138, 2008.
[100]  G. Mazerolles, S. Preys, C. Bouchut et al., “Combination of several mass spectrometry ionization modes: a multiblock analysis for a rapid characterization of the red wine polyphenolic composition,” Analytica Chimica Acta, vol. 678, no. 2, pp. 195–202, 2010.
[101]  M. Krauss, H. Singer, and J. Hollender, “LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns,” Analytical and Bioanalytical Chemistry, vol. 397, no. 3, pp. 943–951, 2010.
[102]  M. De Rosso, A. Panighel, R. Carraro et al., “Chemical characterization and enological potential of Raboso varieties by study of secondary grape metabolites,” Journal of Agricultural and Food Chemistry, vol. 58, no. 21, pp. 11364–11371, 2010.
[103]  R. Flamini, A. Dalla Vedova, and A. Calò, “Studio sui contenuti monoterpenici di 23 accessioni di uve Moscato: correlazione tra profilo aromatico e varietà,” Rivista Di Viticoltura E Di Enologia, vol. 54, no. 2-3, pp. 35–49, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133