全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sensitive Spectrophotometric Determinations of Paracetamol and Protriptyline HCl Using 3-Chloro-7-hydroxy-4-methyl-2H-chromen-2-one

DOI: 10.1155/2013/935819

Full-Text   Cite this paper   Add to My Lib

Abstract:

A new spectrophotometric method is developed for the determination of Paracetamol (PCT) and protriptyline HCl (PTP) in pure forms and in pharmaceutical formulations. The experiment involves the use of 3-chloro-7-hydroxy-4-methyl-2H-chromen-2-one as a novel chromogenic reagent for the determination of PCT and PTP. The method is based on the formation of charge transfer complex between the drugs and chromogenic reagent. Beer's law is obeyed in the concentration ranges 10.00–60.00?μg?mL?1 for PCT at 545?nm and 40.00–160.00?μg?mL?1 for PTP at 468?nm. The molar absorptivity, Sandell, sensitivity, and limit of detection and quantification are also calculated. The method has been successfully applied for the determination of both PCT and PTP in pharmaceutical samples with acceptable results. 1. Introduction Paracetamol (PCT), N-(4-hydroxyphenyl)ethanamide is one of the most commonly used home medicine to reduce pain and fever [1] (Figure 1). These actions are known, respectively, as analgesic and antipyretic [2]. PCT is also used to treat headache, muscle ache, arthritis, backache, toothache, cold, and fever. An overdose of PCT may cause some toxic effects such as fulminating hepatic necrosis, which causes about 450 deaths in the USA every year [3]. Thus, the development of simple methods for the determination of PCT is obviously significant in pharmaceuticals. Figure 1: Paracetamol. Protriptyline HCl (PTP) is one of the tricyclic antidepressant [4], chemically known as N-methyl-5H-dibenzo[a,d]-cycloheptene-5-propanamine hydrochloride (Figure 2). It works by blocking the transporters responsible for reuptake of neurotransmitters like norepinephrine and serotonin [5]. This medication is primarily used to treat the anxiety, depression, bipolar disorder, and obsessive-compulsive disorder [6]. They are also known as effective analgesic used for the treatment of chronic pain especially neuropathic or neuralgic pain [7]. Figure 2: Protriptyline HCL. A number of methods are available in the literature for the determination of PCT, such as high-performance liquid chromatography [8–10], Chemiluminescence [11], Fluorescence [12], pulse perturbation technique [13], Spectrofluorimetric [14], and several others. A very few methods are reported in the literature for the determination of PTP in pharmaceutical formulations which include high performance liquid chromatography [15–17], Liquid chromatography [18], and flow injection technique [19]. Above mentioned techniques are not widely used in the basic clinical laboratories, because they require more expensive equipments

References

[1]  T. Németh, P. Jankovics, J. Németh-Palotás, and H. Koszegi-Szalai, “Determination of paracetamol and its main impurity 4-aminophenol in analgesic preparations by micellar electrokinetic chromatography,” Journal of Pharmaceutical and Biomedical Analysis, vol. 47, no. 4-5, pp. 746–749, 2008.
[2]  A. Afkhami, N. Sarlak, and A. R. Zarei, “Spectrophotometric determination of salicylamide and paracetamol in biological samples and pharmaceutical formulations by a differential kinetic method,” Acta Chimica Slovenica, vol. 53, no. 3, pp. 357–362, 2006.
[3]  á. N. Mhaoláin, B. D. Kelly, E. G. Breen, and P. Casey, “Legal limits for paracetamol sales,” The Lancet, vol. 369, no. 9570, p. 1346, 2007.
[4]  American Society of Health-System Pharmacists, AHFS Drug Information, 2002.
[5]  F. Sériès and Y. Cormier, “Effects of protriptyline on diurnal and nocturnal oxygenation in patients with chronic obstructive pulmonary disease,” Annals of Internal Medicine, vol. 113, no. 7, pp. 507–511, 1990.
[6]  Ultram, Protriptyline, Ortho-McNeil Pharmaceutical, 2007.
[7]  J. Kirchheiner, K. Nickchen, M. Bauer et al., “Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response,” Molecular Psychiatry, vol. 9, no. 5, pp. 442–473, 2004.
[8]  M. Kartal, “LC method for the analysis of paracetamol, caffeine and codeine phosphate in pharmaceutical preparations,” Journal of Pharmaceutical and Biomedical Analysis, vol. 26, no. 5-6, pp. 857–864, 2001.
[9]  S. Gruji?, T. Vasiljevi?, and M. Lau?evi?, “Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography-ion trap-tandem mass spectrometry,” Journal of Chromatography A, vol. 1216, no. 25, pp. 4989–5000, 2009.
[10]  M. E. El-Kommos and K. M. Emara, “Determination of phenyltoloxamine salicylamide, caffeine, paracetamol, codeine and phenacetin by HPLC,” Talanta, vol. 36, no. 6, pp. 678–679, 1989.
[11]  W. Ruengsitagoon, S. Liawruangrath, and A. Townshend, “Flow injection chemiluminescence determination of paracetamol,” Talanta, vol. 69, no. 4, pp. 976–983, 2006.
[12]  J. C. L. Alves and R. J. Poppi, “Simultaneous determination of acetylsalicylic acid, paracetamol and caffeine using solid-phase molecular fluorescence and parallel factor analysis,” Analytica Chimica Acta, vol. 642, no. 1-2, pp. 212–216, 2009.
[13]  N. Peji?, L. Kolar-Ani?, S. Ani?, and D. Stanisavljev, “Determination of paracetamol in pure and pharmaceutical dosage forms by pulse perturbation technique,” Journal of Pharmaceutical and Biomedical Analysis, vol. 41, no. 2, pp. 610–615, 2006.
[14]  K. W. Street Jr. and G. H. Schenk, “Spectrofluorometric determination of acetylsalicylic acid, salicylamide, and salicylic acid as an impurity in pharmaceutical preparations,” Journal of Pharmaceutical Sciences, vol. 70, no. 6, pp. 641–646, 1981.
[15]  U. Huber, Analysis of Tricyclic Antidepressants By HPLC, Agilent Technologies, 1998.
[16]  P. Koteel, R. E. Mullins, and R. H. Gadsden, “Sample preparation and liquid-chromatographic analysis for tricyclic antidepressants in serum,” Clinical Chemistry, vol. 28, no. 3, pp. 462–466, 1982.
[17]  S. J. Bannister, V. D. W. S. van der Wal, J. W. Dolan, and L. R. Snyder, “Liquid-chromatographic analysis for common tricyclic antidepressant drugs and their metabolites in serum or plasma with the technicon “FAST-LC” system,” Clinical Chemistry, vol. 27, no. 6, pp. 849–855, 1981.
[18]  F. A. Beierle and R. W. Hubbard, “Liquid chromatographic separation of antidepressant drugs: I. Tricyclics,” Therapeutic Drug Monitoring, vol. 5, no. 3, pp. 279–292, 1983.
[19]  M. E. Georgiou, C. A. Georgiou, and M. A. Koupparis, “Rapid automated spectrophotometric competitive complexation studies of drugs with cyclodextrins using the flow injection gradient technique: tricyclic antidepressant drugs with α-cyclodextrin,” Analyst, vol. 124, no. 3, pp. 391–396, 1999.
[20]  A. Ruiz Medina, M. L. Fernández de Córdova, and A. Molina Díaz, “A very simple resolution of the mixture paracetamol and salicylamide by flow injection-solid phase spectrophotometry,” Analytica Chimica Acta, vol. 394, no. 2-3, pp. 149–158, 1999.
[21]  G. V. S. R. Kumar, V. R. Devi, K. V. D. Lakshmi, and L. R. Bs Murty, “Detection and spectrophotometric determination of paracetamol using NBS,” Analytical Chemistry, vol. 12, no. 2, pp. 62–65, 2013.
[22]  L. Nejem, S. Antakli, and H. Bagdashe, “Spectrophotometric determination of paracetamol and orfinadrin citrate in tablets,” Asian Journal of Chemistry, vol. 2, no. 25, pp. 1079–1082, 2013.
[23]  K. Divya and B. Narayana, “New visible spectrophotometric methods for the determination of protriptyline HCl in bulk and pharmaceutical formulations,” Journal of Chemical and Pharmaceutical Research, vol. 4, no. 9, pp. 4352–4358, 2012.
[24]  G. D. Christian and J. E. O'Rilly, “Jobs method,” in Instrumental Analysis, Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 1980.
[25]  International Conference on Harmonization (ICH) Guidelines, http://www.ich.org/.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133