This paper provides a general review on principle of chemiluminescent reactions and their recent applications in drug analysis. The structural requirements for chemiluminescent reactions and the different factors that affect the efficiency of analysis are included in the review. Chemiluminescence application in immunoassay is the new version for this review. Practical considerations are not included in the review since the main interest is to state, through the aforementioned applications, that chemiluminescence has been, is, and will be a versatile tool for pharmaceutical analysis in future years. 1. Introduction Luminescence is the most conveniently defined as the radiation emitted by a molecule, or an atom, when these species return to the ground state from the exited state. According to the source of excitation, luminescence phenomenon could be classified as photoluminescence (fluorescence and phosphorescence) when the excitation source is energy from absorbed light, chemiluminescence-energy from chemical reactions and bioluminescence energy from biologically catalysed reactions. An exited molecule has the same geometry and is in the same environment as it was in ground state. In this situation it either emits a photon from the same vibrational level to which it was exited initially or it undergoes in vibrational level prior to emission of radiation [1, 2]. For an isolated molecule in the gas phase, the only way to lose vibrational energy is to emit an infrared photon, which is less probable than undergoing an electronic transition to return to the ground state. Therefore, one tends to see photon emission from higher vibrational levels of exited states in gas phase spectra at low pressure. In a solution, however, thermal relaxation of a vibrationally exited molecule is quite rapid through transfer of excess vibrational energy from the solute molecule to the solvent. In fact, this process is so efficient that all the excess vibrational energy of the exited state is lost, and this process occurs in to ?sec. This means that before an exited molecule in a solution can emit a photon, it will undergo vibrational relaxation, and therefore photon emission will always occur from the lowest vibrational level of an excited state [3, 4]. Once a molecule arrives at the lowest vibrational level of an exited singlet state, it can do a number of things, one of which is to return to the ground state by photon emission. This process is called fluorescence. The lifetime pf an exited singlet state is approximately to ?sec and therefore the decay time of fluorescence is
References
[1]
L. B?tter-Jensen, “Luminescence techniques: instrumentation and methods,” Radiation Measurements, vol. 27, no. 5-6, pp. 749–768, 1997.
[2]
Y. Hajime , Nitride Phosphors and Solid-State Lighting, Taylor & Francis, 2011.
[3]
K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” Journal of Luminescence, vol. 1-2, no. C, pp. 693–701, 1970.
[4]
B. Wen, Thermally Stimulated Luminescence Excitation Spectroscopy as a Technique to Measure the Photoionization Energy of Sr(SCN)2:Eu2+, vol. 2004, Maureen Grasso Dean of the Graduate School, The University of Georgia.
[5]
F. McElroy, EPA/NERL, Determination of Ozone by Ultraviolet Analysis, May 2000.
[6]
C.-Y. Liu and A. J. Bard, “Electrochemistry and electrogenerated chemiluminescence with a single faradaic electrode,” Analytical Chemistry, vol. 77, no. 16, pp. 5339–5343, 2005.
[7]
A. Pavlova, P. Ivanova, and T. Dimova, “Sulfur compounds in petroleum hydrocarbon streams,” Petroleum & Coal, vol. 54, no. 1, pp. 9–13, 2012.
[8]
A. A. Alwarthan and F. A. Aly, “Chemiluminescent determination of pyridoxine hydrochloride in pharmaceutical samples using flow injection,” Talanta, vol. 45, no. 6, pp. 1131–1138, 1998.
[9]
C. Fu-Chun, H. Yu-Ming, and Z. Zhun-Jun, “Chemiluminescent determination on a luminol reaction of streptomycin sulfate by flow injection analysis,” Journal of Southwest China Normal University, vol. 2004, no. 1, pp. 79–83, 2004.
[10]
J. K. Robinson, M. J. Bollinger, and J. W. Birks, “Luminol/H2O2 chemiluminescence detector for the analysis of nitric oxide in exhaled breath,” Analytical Chemistry, vol. 71, no. 22, pp. 5131–5136, 1999.
[11]
H. Sun, J. Wang, P. Chen, and T. Wang, “Determination of ofioxacin and levofloxacin in pharmaceutical preparation and human urine using a new flow-injection,” Asian Journal of Pharmaceutical Sciences and Research, vol. 1, no. 5, pp. 21–32, 2011.
[12]
P. Thongsrisomboon, B. Liawruangrath, S. Liawruangrath, and S. Satienperakul, “Determination of nitrofurans residues in animal feeds by flow injection chemiluminescence procedure,” Food Chemistry, vol. 123, no. 3, pp. 834–839, 2010.
[13]
C. Yu, Y. Tang, X. Han, and X. Zheng, “Sensitive assay for catecholamines in pharmaceutical samples and blood plasma using flow injection chemiluminescence analysis,” Analytical Sciences, vol. 22, no. 1, pp. 25–28, 2006.
[14]
W. Freyer, C. C. Neacsu, and M. B. Raschke, “Absorption, luminescence, and Raman spectroscopic properties of thin films of benzo-annelated metal-free porphyrazines,” Journal of Luminescence, vol. 128, no. 4, pp. 661–672, 2008.
[15]
C. J. Borman, B. P. Sullivan, C. M. Eggleston, and P. J. S. Colberg, “The use of flow-injection analysis with chemiluminescence detection of aqueous ferrous iron in waters containing high concentrations of organic compounds,” Sensors, vol. 9, no. 6, pp. 4390–4406, 2009.
[16]
F. A. Aly, N. A. Alarfaffj, and A. A. Alwarthan, “Permanganate-based chemiluminescence analysis of cefadroxil monohydrate in pharmaceutical samples and biological fluids using flow injection,” Talanta, vol. 47, no. 2, pp. 471–478, 1998.
[17]
F. A. Aly, S. A. Al-Tamimi, and A. A. Alwarthan, “Chemiluminescence determination of some fluoroquinolone derivatives in pharmaceutical formulations and biological fluids using [Ru(bipy)3??2+]-Ce(IV) system,” Talanta, vol. 53, no. 4, pp. 885–893, 2001.
[18]
Y.-H. Li, “Chemiluminescence determination of sulpiride in pharmaceutical preparations and biological fluids based on KMnO4-tween 80 reaction,” Journal of the Chinese Chemical Society, vol. 56, no. 1, pp. 164–168, 2009.
[19]
A. Penzkofer and Y. Lu, “Fluorescence quenching of rhodamine 6G in methanol at high concentration,” Chemical Physics, vol. 103, no. 2-3, pp. 399–405, 1986.
[20]
C. Dodeigne, L. Thunus, and R. Lejeune, “Chemiluminescence as a diagnostic tool. A review,” Talanta, vol. 51, no. 3, pp. 415–439, 2000.
[21]
J. Hodak, D. Harvey, and B. Valeur, Introduction to Fluorescence and Phosphorescence, 2008.
[22]
E. L. Wehry, “Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry,” Analytical Chemistry, vol. 52, no. 5, 1980.
[23]
M. Sauer, J. Hofkens, and J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011.
[24]
J. Han, J. Jose, E. Mei, and K. Burgess, “Chemiluminescent energy-transfer cassettes based on fluorescein and nile red,” Angewandte Chemie International Edition, vol. 46, no. 10, pp. 1684–1687, 2007.
[25]
A. M. García-Campa?a and W. R. G. Baeyens, “Principles and recent analytical applications of chemiluminescence,” Analusis, vol. 28, no. 8, pp. 686–698, 2000.
[26]
A. M. Jimenez and M. J. Navas, “Chemiluminescence methods (present and future),” Grasas y Aceites, vol. 53, no. 1, pp. 64–75, 2002.
[27]
Miyawa and Schulman, “Handbook of Pharmaceutical analysis,” in Luminescence Spectroscopy, pp. 457–460.
[28]
R. J. Stanley, B. King, and S. G. Boxer, “Excited state energy transfer pathways in photosynthetic reaction centers. 1. Structural symmetry effects,” Journal of Physical Chemistry, vol. 100, no. 29, pp. 12052–12059, 1996.
[29]
F. Mccapra, The Chemiluminescence of Organic Compounds, School of Molecular Sciences, University of Sussex, Falmer, Brighton, UK.
[30]
G. S. Denisov, N. S. Golubev, V. M. Schreiber, S. S. Shajakhmedov, and A. V. Shurukhina, “Effect of intermolecular hydrogen bonding and proton transfer on fluorescence of salicylic acid,” Journal of Molecular Structure, vol. 436-437, pp. 153–160, 1997.
[31]
H. S. Lee, Y. S. Lee, and G.-H. Jeung, “Potential energy surfaces for lith and photochemical reactions Li* + H2 ? LiH + H,” Journal of Physical Chemistry A, vol. 103, no. 50, pp. 11080–11088, 1999.
[32]
M. Anpo and M. Che, “Applications of photoluminescence techniques to the characterization of solid surfaces in relation to adsorption, catalysis, and photocatalysis,” Advances in Catalysis, vol. 44, pp. 119–257, 1999.
[33]
C. Jan Hummelen, T. M. Luider, D. Oudman, J. N. Koek, and H. Wynberg, 1,2-Dioxetanes: Luminescent and Nonluminescent Decomposition, Chemistry, and Potential Applications, State University of Groningen, Groningen, The Netherlands.
[34]
E. F. Fabrizio, A. Payne, N. E. Westlund, A. J. Bard, and P. P. Magnus, “Photophysical, electrochemical, and electrogenerated chemiluminescent properties of 9,10-dimethyl-7,12-diphenylbenzo[k]fluoranthene and 9,10-dimethylsulfone-7,12-diphenylbenzo[k]fluoranthene,” Journal of Physical Chemistry A, vol. 106, no. 10, pp. 1961–1968, 2002.
[35]
B. Valeur, D. Harvey, and J. Hodak, Molecular Fluorescence: Principles and Applications, Wiley, 2001.
[36]
V. Narasimham and N. Modeling, Analysis of Chemiluminescence Sensing for Syngas, Methane and Jet-a Combustion, Georgia Institute of Technology, 2008.
[37]
K. Thompson and J. Rodriguez, The Behavior of Photo-Excited Molecules: Biological Actions and Biotechnological Applications, 2008.
[38]
I. Baraldi, G. Brancolini, F. Momicchioli, G. Ponterini, and D. Vanossi, “Solvent influence on absorption and fluorescence spectra of merocyanine dyes: a theoretical and experimental study,” Chemical Physics, vol. 288, no. 2-3, pp. 309–325, 2003.
[39]
R.-I. Tigoianu, A. Airinep, and D.-O. Dorohoi, “Solvent influence on the electronic fluorescence spectra of anthracene,” Revista de Chimie, vol. 61, no. 5, pp. 491–494, 2010.
[40]
P. Hrdlovic, J. Donovalova, H. Stankovicova, and A. Gaplovsky, “Influence of polarity of solvents on the spectral properties of bichromophoric coumarins,” Molecules, vol. 15, no. 12, pp. 8915–8932, 2010.
[41]
P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and Quenching of Single-Molecule Fluorescence, The American Physical Society. The Institute of Optics and Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA, March 2006.
[42]
A. Mark Behlke, L. Huang, L. Bogh, S. Rose, and E. J. Devor, Fluorescence Quenching by Proximal G-bases, Integrated DNA Technologies, 2005.
[43]
M. Mimuro, “Visualization of excitation energy transfer processes in plants and algae,” Photosynthesis Research, vol. 73, no. 1–3, pp. 133–138, 2002.
[44]
D. Nolting, T. Schultz, I. V. Hertel, and R. Weinkauf, “Excited state dynamics and fragmentation channels of the protonated dipeptide H2N-Leu-Trp-COOH,” Physical Chemistry Chemical Physics, vol. 8, no. 44, pp. 5247–5254, 2006.
[45]
D. Kimbrough, Chemiluminescence and Anti-Oxidants, 2000.
[46]
H. Sun Cho, D. H. Jeong, M.-C. Yoon et al., “Excited-state energy transfer processes in phenylene- and biphenylene-linked and directly-linked zinc(II) and free-base hybrid diporphyrins,” Journal of Physical Chemistry A, vol. 105, no. 17, pp. 4200–4210, 2001.
[47]
K. Zargoosh, M. J. Chaichi, S. Asghari, M. Qandalee, and M. Shamsipur, “A study of chemiluminescence from reaction of bis(2,4,6-trichlorophenyl) oxalate, hydrogen peroxide and diethyl-2-(cyclohexylamino)-5-[(E)-2-phenyl-1-ethenyl]-3,4-furandicarboxylate as a novel fluorescer,” Journal of the Iranian Chemical Society, vol. 7, no. 2, pp. 376–383, 2010.
[48]
M. G. Prisant, C. T. Rettner, and R. N. Zare, “A direct interaction model for chemiluminescent reactions,” The Journal of Chemical Physics, vol. 81, no. 6, pp. 2699–2712, 1984.
[49]
M. J. Navas and A. M. Jiménez, “Chemiluminescent methods in olive oil analysis,” Journal of the American Oil Chemists' Society, vol. 84, no. 5, pp. 405–411, 2007.
[50]
K.-T. Wong, T.-H. Hung, T.-C. Chao, and T.-I. Ho, “Synthesis, properties, and electrogenerated chemiluminescence (ECL) of a novel carbazole-based chromophore,” Tetrahedron Letters, vol. 46, no. 5, pp. 855–858, 2005.
[51]
J. Yu, L. Ge, P. Dai, C. Zhan, S. Ge, and J. Huang, “A novel glucose chemiluminescence biosensor based on a rhodanine derivative chemiluminescence system and multilayer-enzyme membrane,” Turkish Journal of Chemistry, vol. 34, no. 4, pp. 489–498, 2010.
T. Peter So and C. Y. Dong, Fluorescence Spectrophotometry, Encyclopedia of Life Sciences, Macmillan Publishers Ltd, Nature Publishing, 2002.
[54]
W. R. G. Baeyens, S. G. Schulman, A. C. Calokerinos et al., “Chemiluminescence-based detection: principles and analytical applications in flowing streams and in immunoassays,” Journal of Pharmaceutical and Biomedical Analysis, vol. 17, no. 6-7, pp. 941–953, 1998.
[55]
C. Wang, J. Wu, C. Zong, J. Xu, and H.-X. Ju, “Chemiluminescent immunoassay and its applications,” Chinese Journal of Analytical Chemistry, vol. 40, no. 1, pp. 3–10, 2012.
[56]
M. Hao and Z. Ma, “An ultrasensitive chemiluminescence biosensor for carcinoembryonic antigen based on autocatalytic enlargement of immunogold nanoprobes,” Sensors, vol. 12, pp. 17320–17329, 2012.
[57]
W. P. Collins, Complementary Immunoassays, John Wiley & Sons, 1988.
[58]
E. Bolton and M. M. Richter, “Chemiluminescence of Tris(2, -bipyridyl)ruthenium(II): a glowing experience,” Journal of Chemical Education, vol. 78, no. 1, pp. 47–48, 2001.