全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spatial Resolution Analysis for Few-Views Discrete Tomography Based on MART-AP Algorithm

DOI: 10.1155/2013/356291

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study a new MART-AP algorithm of few-views discrete tomography. Its efficiency for high-frequency structure reproduction is investigated in a numerical experiment where we reconstruct a 2D model for the estimation of the spatial resolution limit. We estimate the modulation transfer function of the reconstruction algorithm and compare it with the modulation transfer function of projection distortions. Our results show that MART-AP weakly influences the contrast of spatial structures being reproduced and can be used for high-resolution reconstruction when only a few projections are registered. 1. Introduction We have recently seen a growing interest to few-views computed tomography [1]. A need to reconstruct the inner structure of an object in conditions when a few projections (usually less than 10) are only registered arises in many areas of tomography applications. These are, for example, nondestructive testing in industry [2, 3], luggage inspection [3, 4], plasma emission tomography [5], tomography of explosion-compressed metal shells [6], fast detonation research [7], and other. The main problem of few-views tomography is that reconstructed images are not free from artifacts which result from strongly limited data and make the reproduction of spatial structures less accurate. It is not easy to compensate the artifacts and as a rule, the problem is resolved through the use of a priori information about the object [8]. In doing so, the leading role is given to methods of discrete tomography [9–11], which use a priori information on the discrete values of the object function to be reconstructed. What is of great importance is the way in which this information is incorporated into the image. Until recently, the Bayesian reconstruction techniques [8–12] were thought to be most effective in terms of the ease of a priori information incorporation. Now more often different modifications to the well-known algebraic reconstruction technique [1] are applied to solve this problem. As an example, we can refer to an algorithm [13] based on a multistep procedure where each iteration includes segmentation with a priori information and then correction of intensities in cells which are near the boundaries of the contrast structures. In our recent work [14], we proposed a discrete tomography algorithm based on the multiplicative algebraic reconstruction technique (MART). We call it MART-AP (an MART which uses a priori information). Our algorithm, like that one described in [13], is based on a multistep solution correction procedure. But we apply corrections

References

[1]  G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction From Projections, Springer, London, UK, 2009.
[2]  D. M. Scott and R. A. Williams, Eds., Frontiers in Industrial Process Tomography, Engineering Foundation, New York, NY, USA, 1996.
[3]  V. L. Vengrinovich and S. A. Zolotarev, Iterative Methods of Tomography, Belarus Nauka, Minsk, 2009.
[4]  K. Krug, J. Tortora, R. Bijjani, and R. Eilbert, “Multiview X-ray based system for detecting contraband such as in baggage,” US Patent 6088423, 2000.
[5]  V. V. Pickalov and N. G. Preobrazhensky, Reconstruction Tomography in Gas Dynamics and Plasma Physics, Nauka, Novosibirsk, 1987.
[6]  A. B. Konovalov, D. V. Mogilenskikh, E. A. Kozlov et al., “Few-view gamma tomography used to monitor scabbing and shear fracture in a spherical iron shell compressed by explosion,” Russian Journal of Nondestructive Testing, vol. 44, no. 1, pp. 15–24, 2008.
[7]  T. F. Pang, “AWE multi-axis radiographic facility: a review of 3D-reconstructions from limited data,” in Proceedings of the AIP Conference of Bayesian Inference and Maximum Entropy Methods in Science and Engineering, vol. 568, pp. 521–530, Gif-sur-Yvette, France, 2000.
[8]  S. Siltanen, V. Kolehmainen, S. Jaervenpaa, et al., “Statistical inversion for X-ray tomography with few radiographs. I. General theory,” Physics in Medicine and Biology, vol. 48, no. 10, pp. 1437–1463, 2003.
[9]  G. T. Herman and A. Kuba, Eds., Discrete Tomography: Foundations, Algorithms and Applications, Birkh?user, Boston, Mass, USA, 1999.
[10]  G. T. Herman and A. Kuba, “Discrete tomography in medical imaging,” Proceedings of the IEEE, vol. 91, no. 10, pp. 1612–1626, 2003.
[11]  G. T. Herman and A. Kuba, Eds., Advances in Discrete Tomography and Its Applications, Birkh?user, Boston, Mass, USA, 2007.
[12]  B. De Man, J. Nuyts, P. Dupont, G. Marchai, and P. Suetens, “Reduction of metal streak artifacts in x-ray computed tomography using a transmission maximum a posteriori algorithm,” IEEE Transactions on Nuclear Science, vol. 47, no. 3, pp. 977–981, 2000.
[13]  K. J. Batenburg and J. Sijbers, “Dart: a fast heuristic algebraic reconstruction algorithm for discrete tomography,” in Proceedings of the 14th IEEE International Conference on Image Processing (ICIP '07), pp. IV133–IV136, San Antonio, Tex, USA, September 2007.
[14]  V. V. Vlasov, A. B. Konovalov, and A. S. Uglov, “An a priori information based algorithm for artifact preventive reconstruction in few-view computed tomography,” in Proceedings of the 5th International Symposium on Communications, Control and Signal Processing (ISCCSP '12), Paper 042, Roma, Italy, May 2012.
[15]  G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems, vol. TT52, SPIE, Bellingham, Wash, USA, 2001.
[16]  C. E. Metz and K. Doi, “Transfer function analysis of radiographic imaging systems,” Physics in Medicine and Biology, vol. 24, no. 6, pp. 1079–1106, 1979.
[17]  M. V. Yester and G. T. Barnes, “Geometrical limitations of computed tomography (CT) scanner resolution,” in Application of Optical Instrumentation in Medicine VI, vol. 127 of Proceedings of SPIE, pp. 296–303, Boston, Mass, US, 1977.
[18]  A. B. Konovalov, A. N. Kiselev, and V. V. Vlasov, “Spatial resolution of few-view computed tomography using algebraic reconstruction techniques,” Pattern Recognition and Image Analysis, vol. 16, no. 2, pp. 249–255, 2006.
[19]  A. Papoulis, Systems and Transforms with Applications in Optics, McGraw-Hill, New York, NY, USA, 1968.
[20]  J. A. Rowlands, “The physics of computed radiography,” Physics in Medicine and Biology, vol. 47, no. 23, pp. R123–R166, 2002.
[21]  “Industrial Radiography, Image forming Techniques,” GE Inspection Technologies, http://www.ge-mcs.com/download/x-ray/GEIT-30158EN_industrial-radiography-image-forming-techniques.pdf.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133