全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

QC2: A QoS Control Scheme with Quick Convergence in Wireless Sensor Networks

DOI: 10.1155/2013/185719

Full-Text   Cite this paper   Add to My Lib

Abstract:

In wireless sensor networks, too many or too few power-on sensors may cause the waste of resources or poor sensing efficiency; thus, controlling the number of active sensors to meet the predicted target number is the purpose of this research. However, the total number of sensors may be unstable because of the increment and damage to the sensors. It is difficult to control the number of active sensors to meet the predicted target in this condition. Previous studies proposed the Gur Game algorithm to solve this problem. However, the convergence time of the Gur Game algorithm is too long, which causes sensors to consume excessive power and waste resources. Therefore, this paper proposed the QoS Control with Quick Convergence (QC2). This method utilizes total virtual value to accelerate the convergence operation from the number of sensors to the target number. The experiment result shows that the QC2 method can cause the number of sensors to converge rapidly with the target value and that QC2 can be over a hundred times faster than the Gur Game algorithm with regard to convergence. 1. Introduction With the recent technological developments of the wireless networks and multifunctional sensors with processing and communication capabilities, wireless sensor networks (WSNs) have been used in an increasing number of applications. WSNs can provide a more accurate or reliable monitoring service for different classes of applications. Quality of service can be an important mechanism to guarantee that the distinct requirements for different classes of applications are met. A WSN consists of a large number of small sensors and a sink (base) station. Sensors are small devices with limited energy supply and low computational capability. They are used for covering and monitoring a sensing field to collect useful information. Sensor networks are useful in a variety of domains, such as environmental observation, health care, and military monitoring. Sensors are usually placed randomly in a sensor field. The concept of redundancy is applied to WSNs to achieve a high degree of reliability. One or more sensors may cover the same region and gather similar data; thus, numerous redundant data are sent to the sink. Redundant data collection should be avoided to conserve energy in WSNs. Sensors are scheduled to be periodically active and idle. Only several sensors are active in a given period of time, resulting in high reliability and low data redundancy. The assumption that a sensor network has a fixed number of nodes is unreasonable because sensor nodes usually have limited

References

[1]  R. Iyer and L. Kleinrock, “QoS control for sensor networks,” in Proceedings of the IEEE International Conference on Communications (ICC '03), pp. 517–521, May 2003.
[2]  S. I. Nayer and H. H. Ali, “A dynamic energy-aware algorithm for self-optimizing wireless sensor networks,” Lecture Notes in Computer Science, vol. 5343, pp. 262–268, 2008.
[3]  R. G. Tsai and H. L. Wang, “Shuffle: an enhanced QoS control by balancing energy consumption in wireless sensor networks,” Lecture Notes in Computer Science, vol. 6104, pp. 603–611, 2010.
[4]  R. G. Tsai and H. L. Wang, “A coverage-aware QoS control in wireless sensor networks,” in Proceedings of the International Conference on Communications and Mobile Computing (CMC '10), pp. 192–196, April 2010.
[5]  L. Zhao, C. Xu, Y. Xu, and X. Li, “Energy-aware QoS control for wireless sensor network,” in Proceedings of the IEEE International Conference on Industrial Electronics and Applications (ICIEA '06), pp. 1–6, 2006.
[6]  D. Chen and P. K. Varshney, “QoS support in wireless sensor networks: a survey,” in Proceedings of the International Conference on Wireless Networks (ICWN '04), pp. 227–233, June 2004.
[7]  J. Kay and J. Frolik, “Quality of service analysis and control for wireless sensor networks,” in Proceedings of the IEEE International Conference on Mobile Ad-Hoc and Sensor Systems (MASS '04), pp. 359–368, October 2004.
[8]  B. Liang, J. Frolik, and X. S. Wang, “Energy-efficient dynamic spatial resolution control for wireless sensor clusters,” International Journal of Distributed Sensor Networks, vol. 5, no. 4, pp. 361–389, 2009.
[9]  J. Frolik, “QoS control for random access wireless sensor networks,” in Proceedings of the IEEE International Conference on Wireless Communications and Networking Conference (WCNC '04), pp. 1522–1527, 2004.
[10]  V. Pereira, “A taxonomy of wireless sensor networks with QoS,” in Proceedings of the IFIP International Conference on New Technologies, Mobility and Security (NTMS '11), pp. 1–4, 2011.
[11]  B. Bhuyan, H. Sarma, N. Sarma, A. Kar, and R. Mall, “Quality of Service (QoS) provisioning in wireless sensor networks and related challenges,” Wireless Sensor Network, vol. 2, no. 11, pp. 861–868, 2010.
[12]  A. B. Bagula, “Modelling and implementation of QoS in wireless sensor networks: a multiconstrained traffic engineering model,” Eurasip Journal on Wireless Communications and Networking, vol. 2010, Article ID 468737, 2010.
[13]  D. Changmin, “Topology controlling for QoS in wireless sensor networks,” in Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM '09), pp. 1–4, September 2009.
[14]  J. A. Jiang, T. S. Lin, C. L. Chuang et al., “A QoS-guaranteed coverage precedence routing algorithm for wireless sensor networks,” Sensors, vol. 11, no. 4, pp. 3418–3438, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133