全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Low-Complexity Localization and Tracking in Hybrid Wireless Sensor Networks

DOI: 10.5402/2012/430169

Full-Text   Cite this paper   Add to My Lib

Abstract:

Localization in Wireless Sensor Networks (WSNs) is an important research topic: readings come from sensors scattered in the environment, and most of applications assume that the exact position of the sensors is known. Due to power restrictions, WSN nodes are not usually equipped with a global positioning system—hence, many techniques have been developed in order to estimate the position of nodes according to some measurements over the radio channel. In this paper, we propose a new technique to track a moving target by combining distance measurements obtained from both narrowband IEEE 802.15.4 and Ultrawideband (UWB) radios, and then exploiting a novel speed-based algorithm for bounding the error. This process is applied to a real dataset collected during a measurement campaign, and its performance is compared against a Kalman filter. Results show that our algorithm is able to track target path with good accuracy and low computational impact. 1. Introduction A Wireless Sensor Network (WSN) consists of a number of autonomous elements spatially distributed in an environment to monitor physical parameters, detect events, or track objects. These core elements of a WSN are called nodes, and each of them has a radio transceiver, a microcontroller, and a power source like an energy harvester or a battery. In addition, a node is connected to a number of sensors, and the acquired values are cooperatively processed and delivered wirelessly through the network. Size, energy, and cost constraints of the nodes result in corresponding limits on the available resources, namely, memory, communications bandwidth, and computational power—these limits must always be considered while developing and designing new algorithms. The development of WSNs was initially motivated by military applications, such as battlefield surveillance, and in the last years they have received considerable attention from many computer science, electronics, and telecommunications researchers. Nowadays, WSNs are used in many industrial and consumer applications, such as home automation, industrial control, structural monitoring, pedestrian navigation, and assets tracking. In all these applications, positional information about one or more devices of the network is a crucial aspect and has motivated a lot of research efforts. A common approach for estimating the unknown position of a sensor node is to exploit ranging information obtained from some fixed-position nodes, hereafter referred as “anchors” [1, 2]. Distance estimation between two antennas is made possible by the received radio waves

References

[1]  A. Savvides, M. Srivastava, L. Girod, and D. Estrin, Localization in Sensor Networks, Kluwer Academic, 2004.
[2]  F. Viani, P. Rocca, G. Oliveri, D. Trinchero, and A. Massa, “Localization, tracking, and imaging of targets in wireless sensor networks: an invited review,” Radio Scienceno, vol. 46, no. 5, p. 12, 2011.
[3]  R. Verdone, D. Dardari, G. Mazzini, and A. Conti, Wireless Sensor and Actuator Networks, Technologies Analysis and Design, Academic Press, 2007.
[4]  J. Graefenstein and M. E. Bouzouraa, “Robust method for outdoor localization of a mobile robot using received signal strength in low power wireless networks,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '08), pp. 33–38, May 2008.
[5]  A. Wessels, X. Wang, R. Laur, and W. Lang, “Dynamic indoor localization using multilateration with RSSI in wireless sensor networks for transport logistics,” in Proceedings of the 24th Eurosensors Conference, pp. 220–223, September 2010.
[6]  G. Zanca, F. Zorzi, A. Zanella, and M. Zorzi, “Experimental comparison of RSSI-based localization algorithms for indoor wireless sensor networks,” in Proceedings of the 3rd Workshop on Real-World Wireless Sensor Networks (REALWSN '08), pp. 1–5, April 2008.
[7]  A. Pal, “Localization algorithms in wireless sensor networks: current approaches and future challenges,” Network Protocols and Algorithms, vol. 2, no. 1, pp. 45–74, 2010.
[8]  E. Goldoni, A. Savioli, M. Risi, and P. Gamba, “Experimental analysis of RSSI-based indoor localization with IEEE 802.15.4,” in Proceedings of the 16th European Wireless Conference (EW '10), pp. 71–77, April 2010.
[9]  F. Sottile, R. Giannantonio, M. A. Spirito, and F. L. Bellifemine, “Design, deployment and performance of a complete real-time ZigBee localization system,” in Proceedings of the 1st IFIP Wireless Days (WD '08), pp. 1–5, November 2008.
[10]  S. Yang and H. Cha, “An empirical study of antenna characteristics toward RF-based localization for IEEE 802. 15. 4 sensor nodes,” in proceedings of the 4th European Workshop on Wireless Sensor Networks, pp. 309–324, January 2007.
[11]  L. Reggiani and R. Morichetti, “Hybrid active and passive localization for small targets,” in Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN '10), pp. 1–5, September 2010.
[12]  D. Dardari, F. Sottile, J. Arribas, M. R. Gohlami, and T. Pedersen, “N WPR.B Database,” Annex of N++ Deliverable WPR.B DB, 2010.
[13]  R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in Proceedings of the 46th IEEE Conference on Decision and Control (CDC '07), pp. 5492–5498, December 2007.
[14]  A. Savioli, E. Goldoni, and P. Gamba, “Impact of channel access on localization in cooperative UWB sensor network: a case study,” in Proceedings of the 9th Workshop on Positioning, Navigation and Communication (WPNC '12), pp. 1–6, March 2012.
[15]  F. K. Jondral, “Software-defined radio—basics and evolution to cognitive radio,” EURASIP Journal on Wireless Communications and Networking, vol. 2005, no. 3, pp. 275–283, 2005.
[16]  S. Challa, F. Leipold, S. K. Deshpande, and M. Liu, “Simultaneous localization and mapping in wireless sensor networks,” in Proceedings of the IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 81–87, December 2005.
[17]  M. Z. Win, A. Conti, S. Mazuelas et al., “Network localization and navigation via cooperation,” IEEE Communications Magazine, vol. 49, no. 5, pp. 56–62, 2011.
[18]  A. Ribeiro, G. B. Giannakis, and S. I. Roumeliotis, “SOI-KF: Distributed Kalman filtering with low-cost communications using the sign of innovations,” IEEE Transactions on Signal Processing, vol. 54, no. 12, pp. 4782–4795, 2006.
[19]  R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133