全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Survey of Image Compression Algorithms for Visual Sensor Networks

DOI: 10.5402/2012/760320

Full-Text   Cite this paper   Add to My Lib

Abstract:

With the advent of visual sensor networks (VSNs), energy-aware compression algorithms have gained wide attention. That is, new strategies and mechanisms for power-efficient image compression algorithms are developed, since the application of the conventional methods is not always energy beneficial. In this paper, we provide a survey of image compression algorithms for visual sensor networks, ranging from the conventional standards such as JPEG and JPEG2000 to a new compression method, for example, compressive sensing. We provide the advantages and shortcomings of the application of these algorithms in VSN, a literature review of their application in VSN, as well as an open research issue for each compression standard/method. Moreover, factors influencing the design of compression algorithms in the context of VSN are presented. We conclude by some guidelines which concern the design of a compression method for VSN. 1. Introduction Recent advances in microelectromechanical systems, wireless communication technology together with low-cost digital imaging cameras, have made it conceivable to build in an ad hoc way a wireless network of visual sensors (VSs), called visual sensor network (VSN). Inside a VSN, each VS node has the ability to acquire, compress, and transmit relevant frames to the base station, also called sink, through the path between the source and the sink; see Figure 1. Generally, the base station is defined as a powerful collecting information node located far away from the other (nonpowerful) nodes. Such networks have a myriad of potential applications, ranging from gathering visual information from harsh environment to monitoring and assisting elderly peoples [1]. Figure 1: Visual sensor network. Unlike classical wired networks and scalar data wireless sensor networks (WSNs), VSN faces new additional challenges. Compared to conventional wired networks, VSNs encounter more problems due to their inherent wireless nature and the resource constrained of VS. VSNs differ from their predecessor’s scalar WSN basically in the following points. (1) The nature and the volume of visual flows, which are pixel based, are quite different from simple scalar data manipulated by WSN, such as temperature or humidity. (2) VSN’s cameras have a restricted directional sensing field of view, which is not the case for scalar data sensor. (3) Contrary to WSN, important resources in memory, processing, and communication power are required for VS nodes to manipulate visual flows. (4) Energy-aware compression algorithms are mandatory to handle images, compared to

References

[1]  I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless multimedia sensor networks,” Computer Networks, vol. 51, no. 4, pp. 921–960, 2007.
[2]  E. Gürses, G. B. Akar, and N. Akar, “A simple and effective mechanism for stored video streaming with TCP transport and server-side adaptive frame discard,” Computer Networks, vol. 48, no. 4, pp. 489–501, 2005.
[3]  S. Misra, M. Reisslein, and G. Xue, “A survey of multimedia streaming in wireless sensor networks,” IEEE Communications Surveys and Tutorials, vol. 10, no. 1–4, pp. 18–39, 2008.
[4]  S. Soro and W. Heinzelman, “A survey of visual sensor networks,” Advances in Multimedia, vol. 2009, Article ID 640386, 21 pages, 2009.
[5]  Y. Charfi, N. Wakamiya, and M. Murata, “Challenging issues in visual sensor networks,” IEEE Wireless Communications, vol. 16, no. 2, pp. 44–49, 2009.
[6]  B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact of data aggregation in wireless sensor networks,” in Proceedings of the 22nd International Conference on Distributed Computing Systems (ICDCSW ’02), pp. 575–578, IEEE Computer Society, Washington, DC, USA, 2002.
[7]  A. Mascher-Kampfer, H. St?gner, and A. Uhl, “Comparison of compression algorithms' impact on fingerprint and face recognition accuracy,” in Visual Communications and Image Processing, Proceedings of SPIE, February 2007.
[8]  D. U. Lee, H. Kim, S. Tu, M. Rahimi, D. Estrin, and J. D. Villasenor, “Energy-optimized image communication on resource-constrained sensor platforms,” in Proceedings of the 6th International Symposium on Information Processing in Sensor Networks (IPSN '07), pp. 216–225, April 2007.
[9]  K. Sayood, Introduction to Data Compression, Morgan Kaufmann, San Francisco, Calif, USA, 3rd edition, 2005.
[10]  G. K. Wallace, “The JPEG still picture compression standard,” Communications of the ACM, vol. 34, no. 4, pp. 30–44, 1991.
[11]  C. N. Taylor, D. Panigrahi, and S. Dey, “Design of an adaptive architecture for energy efficient wireless image communication,” Lecture Notes in Computer Science, pp. 260–273, 2002.
[12]  G. A. Ruiz, J. A. Michell, and A. Burón, “High throughput parallel-pipeline 2-D DCT/IDCT processor chip,” Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol. 45, no. 3, pp. 161–175, 2006.
[13]  G. A. Ruiz, J. A. Michell, and A. M. Burón, “Parallel-pipeline 8 × 8 forward 2-D ICT processor chip for image coding,” IEEE Transactions on Signal Processing, vol. 53, no. 2 I, pp. 714–723, 2005.
[14]  C. F. Chiasserini and E. Magli, “Energy consumption and image quality in wireless video-surveillance networks,” in Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '02), pp. 2357–2361, September 2002.
[15]  J. Liang and T. D. Tran, “Fast multiplierless approximations of the DCT with the lifting scheme,” IEEE Transactions on Signal Processing, vol. 49, no. 12, pp. 3032–3044, 2001.
[16]  A. Mammeri, A. Khoumsi, D. Ziou, and B. Hadjou, “Energy-aware jpeg for visual sensor networks,” in Proceedings of the MCSEAI Conference, pp. 639–647, Oran, Algeria, 2008.
[17]  G. Pekhteryev, Z. Sahinoglu, P. Orlik, and G. Bhatti, “Image Transmission over IEEE 802.15.4 and ZigBee networks,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '05), pp. 3539–3542, May 2005.
[18]  E. Magli, M. Mancin, and L. Merello, “Low-complexity video compression for wireless sensor networks,” in Proceedings of the International Conference on Multimedia and Expo (ICME ’03), pp. 585–588, IEEE Computer Society, Washington, DC, USA.
[19]  C. Loeffer, A. Ligtenberg, and G. S. Moschytz, “Practical fast 1-D DCT algorithms with 11 multiplications,” in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 988–991, May 1989.
[20]  C. F. Chiasserini and E. Magli, “Energy-efficient coding and error control for wireless video-surveillance networks,” Telecommunication Systems, vol. 26, no. 2–4, pp. 369–387, 2004.
[21]  K. Y. Chow, K. S. Lui, and E. Y. Lam, “Balancing image quality and energy consumption in visual sensor networks,” in Proceedings of the 1st International Symposium on Wireless Pervasive Computing, pp. 1–5, January 2006.
[22]  K.-Y. Chow, K.-S. Lui, and E. Y. Lam, “Efficient selective image transmission in visual sensor networks,” in Proceedings of the VTC, pp. 1–5, 2007.
[23]  K. S. Lui and E. Y. Lam, “Image transmission in sensor networks,” in Proceedings of the IEEE Workshop on Signal Processing Systems (SiPS '05), pp. 726–730, November 2005.
[24]  C. B. Margi and K. Obraczka, “Energy consumption tradeoffs in visual sensor networks,” in Proceedings of the 24th Brazilian Symposium on Computer Networks, Curitiba, Brazil, 2006.
[25]  L. Ferrigno, S. Marano, V. Paciello, and A. Pietrosanto, “Balancing computational and transmission power consumption in wireless image sensor networks,” in Proceedings of the IEEE International Conference on Virtual Environments, Human-Computer Interfaces, and Measurement Systems (VECIMS '05), pp. 61–66, June 2005.
[26]  S. G. Mallat, “Theory for multiresolution signal decomposition: the wavelet representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989.
[27]  J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3445–3462, 1993.
[28]  J. C. Liu, W. L. Hwang, and W. J. Hwang, “An ARQ-based diversity system for transmission of EZW compressed images over noisy channels,” in Proceedings of the International Conference on Image Processing (ICIP '02), pp. 221–224, September 2002.
[29]  M. Hamdi, N. Boudriga, and M. S. Obaidat, “Bandwidth-effective design of a satellite-based hybrid wireless sensor network for mobile target detection and tracking,” IEEE Systems Journal, vol. 2, no. 1, pp. 74–82, 2008.
[30]  A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, no. 3, pp. 243–250, 1996.
[31]  S. Iren and P. D. Amer, “Application level framing applied to image compression,” Annales des Telecommunications, vol. 57, no. 5-6, pp. 502–519, 2002.
[32]  Y. Sun, H. Zhang, and G. Hu, “Real-time implementation of a new low-memory SPIHT image coding algorithm using DSP chip,” IEEE Transactions on Image Processing, vol. 11, no. 9, pp. 1112–1116, 2002.
[33]  M. Akter, M. B. I. Reaz, F. Mohd-Yasin, and F. Choong, “A modified-set partitioning in hierarchical trees algorithm for real-time image compression,” Journal of Communications Technology and Electronics, vol. 53, no. 6, pp. 642–650, 2008.
[34]  M. Wu and C. W. Chen, “Multiple bitstream Image Transmission over Wireless Sensor Networks,” in Proceedings of the 2nd IEEE International Conference on Sensors, pp. 727–731, October 2003.
[35]  L. W. Chew, W. C. Chia, L. M. Ang, and K. P. Seng, “Very low-memory wavelet compression architecture using strip-based processing for implementation in wireless sensor networks,” Eurasip Journal on Embedded Systems, vol. 2009, Article ID 479281, 2009.
[36]  W. C. Chia, L. M. Ang, and K. P. Seng, “Multiview image compression for wireless multimedia sensor network using image stitching and SPIHT coding with EZW tree structure,” in Proceedings of the International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC '09), pp. 298–301, August 2009.
[37]  D. Taubman, “High performance scalable image compression with EBCOT,” IEEE Transactions on Image Processing, vol. 9, no. 7, pp. 1158–1170, 2000.
[38]  C. C Chang, S.-G. Chen, and J.-C. Chiang, “Efficient encoder design for JPEG2000 EBCOT context formation,” in Proceedings of the15th European Signal Processing Conference (EUSIPCO '07), Poznan, Poland, September 2007.
[39]  D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Compression Fundamentals, Standards and Practice, Kluwer Academic Publishers, Norwell, Mass, USA, 2001.
[40]  T. W. Hsieh and Y. L. Lin, “A hardware accelerator IP for EBCOT Tier-1 coding in JPEG2000 standard,” in Proceedings of the 2nd Workshop on Embedded Systems for Real-Time Multimedia, pp. 87–90, September 2004.
[41]  C. J. Lian, K. F. Chen, H. H. Chen, and L. G. Chen, “Analysis and architecture design of block-coding engine for EBCOT in JPEG 2000,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 3, pp. 219–230, 2003.
[42]  J. S. Chiang, C. H. Chang, Y. S. Lin, C. Y. Hsieh, and C. H. Hsia, “High-speed EBCOT with dual context-modeling coding architecture for JPEG2000,” in Proceedings of the IEEE International Symposium on Cirquits and Systems, pp. III865–III868, May 2004.
[43]  Q. Lu, X. Ye, and L. Du, “An architecture for energy efficient image transmission in WSNs,” in Proceedings of the International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC '09), pp. 296–299, April 2009.
[44]  W. Yu, Z. Sahinoglu, and A. Vetro, “Energy efficient JPEG 2000 image transmission over wireless sensor networks,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '04), pp. 2738–2743, December 2004.
[45]  H. Wu and A. A. Abouzeid, “Power aware image transmission in energy constrained wireless networks,” in Proceedings of the 9th International Symposium on Computers and Communications (ISCC '04), pp. 202–207, July 2004.
[46]  W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-complexity image coding with a set-partitioning embedded block coder,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 11, pp. 1219–1235, 2004.
[47]  G. Xie and H. Shen, “Highly scalable, low-complexity image coding using zeroblocks of wavelet coefficients,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 6, pp. 762–770, 2005.
[48]  M. V. Latte, N. H. Ayachit, and D. K. Deshpande, “Reduced memory listless speck image compression,” Digital Signal Processing, vol. 16, no. 6, pp. 817–824, 2006.
[49]  C. C. Chao and R. M. Gray, “Image compression with a vector speck algorithm,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '06), pp. II445–II448, May 2006.
[50]  A. Islam and W. A. Pearlman, “Embedded and efficient low-complexity hierarchical image coder,” in Proceedings of the Visual Communications and Image Processing, pp. 294–305, January 1999.
[51]  C. Chrysafis and A. Ortega, “Line-based, reduced memory, wavelet image compression,” IEEE Transactions on Image Processing, vol. 9, no. 3, pp. 378–389, 2000.
[52]  J. Oliver and M. P. Malumbres, “On the design of fast wavelet transform algorithms with low memory requirements,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 2, pp. 237–248, 2008.
[53]  S. Rein and M. Reisslein, “Performance evaluation of the fractional wavelet filter: a low-memory image wavelet transform for multimedia sensor networks,” Ad Hoc Networks, vol. 9, no. 4, pp. 482–496, 2011.
[54]  W. Wang, D. Peng, H. Wang, and H. Sharif, “A novel image component transmission approach to improve image quality and energy efficiency in wireless sensor networks,” Journal of Computer Science, vol. 3, no. 5, pp. 353–360, 2007.
[55]  V. Lecuire, C. Duran-Faundez, and N. Krommenacker, “Energy-efficient transmission of wavelet-based images in wireless sensor networks,” International Journal of Sensor Networks, vol. 4, no. 1-2, pp. 37–47, 2007.
[56]  H. Dong, J. Lu, and Y. Sun, “A distributed wavelet-based image coding for wireless sensor networks,” in Intelligent Control and Automation, vol. 344, pp. 72–82, Springer, Berlin, ,Germany, 2006.
[57]  A. Gresho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer Academic Publishers, Norwell, Mass, USA, 1995.
[58]  B. Sastry and S. Kompella, An optimized vector quantization for color image compression [M.S. thesis], Texas Tech university, 1998.
[59]  Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE Transactions on Communications Systems, vol. 28, no. 1, pp. 84–95, 1980.
[60]  N. M. Nasrabadi and R. A. King, “Image coding using vector quantization: a review,” IEEE Transactions on Communications, vol. 36, no. 8, pp. 957–971, 1988.
[61]  K. Masselos, P. Merakos, and C. E. Goutis, “Power efficient vector quantization design using pixel truncation,” in Proceedings of the Proceedings of the 12th International Workshop on Integrated Circuit Design. Power and Timing Modeling, Optimization and Simulation (PATMOS ’02), pp. 409–418, Springer, London, UK, 2002.
[62]  K. Masselos, P. Merakos, T. Stouraitis, and C. E. Goutis, “Trade-off analysis of a low-power image coding algorithm,” Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol. 18, no. 1, pp. 65–80, 1998.
[63]  W. Namgoong and T. H. Meng, “A low-power encoder for pyramid vector quantization of subband coefficients,” Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol. 16, no. 1, pp. 9–23, 1997.
[64]  A. C. Hung, E. K. Tsern, and T. H. Meng, “Error-resilient pyramid vector quantization for image compression,” IEEE Transactions on Image Processing, vol. 7, no. 10, pp. 1373–1386, 1998.
[65]  S. E. Qian, M. Bergeron, C. Serele, I. Cunningham, and A. Hollinger, “Evaluation and comparison of JPEG 2000 and vector quantization based onboard data compression algorithm for hyperspectral imagery,” in Proceedings of the Learning From Earth's Shapes and Colours, pp. 1820–1822, July 2003.
[66]  Z. M. Lu and H. Pei, “Hybrid image compression scheme based on PVQ and DCTVQ,” IEICE Transactions on Information and Systems, vol. 88, no. 10, pp. 2422–2426, 2005.
[67]  Y. Fisher, M. Latapy, and D. Paris, “Compression fractale d’images,” http://focus.ti.com/lit/an/bpra065/bpra065.pdf.
[68]  C. M. Xu and Z. Y. Zhang, “A fast fractal image compression coding method,” Journal of Shanghai University, vol. 5, no. 1, pp. 57–59, 2001.
[69]  M. Kawamata, M. Nagahisa, and T. Higuchi, “Multi-resolution tree search for iterated transformation theory-based coding,” in Proceedings of the ICIP, pp. 137–141, 1994.
[70]  D. Saupe and H. Hartenstein, “Lossless acceleration of fractal image compression by fast convolution,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '96), pp. 185–188, September 1996.
[71]  N. Zhang and H. Yan, “Hybrid image compression method based on fractal geometry,” Electronics Letters, vol. 27, no. 5, pp. 406–408, 1991.
[72]  Y. Fisher, D. Rogovin, and T. P. Shen, “A comparison of fractal methods with dct and wavelets,” in Neural and Stochastic Methods in Image and Signal Processing III, Procedings of SPIE, pp. 2304–2316, 1994.
[73]  T. K. Truong, J. H. Jeng, I. S. Reed, P. C. Lee, and A. Q. Li, “A fast encoding algorithm for fractal image compression using the DCT inner product,” IEEE Transactions on Image Processing, vol. 9, no. 4, pp. 529–535, 2000.
[74]  A. V. D. Walle, “Merging fractal image compression and wavelet transform methods,” in Proceedings of the NATO Advanced Study Institute, pp. 8–17, Springer, 1995.
[75]  C. Hufnagl, J. Hmmerle, A. Pommer, A. Uhl, and M. Vajtersic, “Fractal image compression on massively parallel arrays,” in Proceedings of the International Picture Coding Symposium, Berlin, Germany, 1997.
[76]  K. P. Acken, H. N. Kim, M. J. Irwin, and R. M. Owens, “Architectural design for parallel fractal compression,” in Proceedings of the International Conference on Application-Specific Systems, Architectures and Processors, pp. 3–11, August 1996.
[77]  W. A. Stapleton, W. Mahmoud, and D. J. Jackson, “Parallel implementation of a fractal image compression algorithm,” in Proceedings of the 28th Southeastern Symposium on System Theory (SSST '96), pp. 332–336, April 1996.
[78]  D. Saupe and R. Hamzaoui, “A review of the fractal image compression literature,” SIGGRAPH Computer Graphics, vol. 28, no. 4, pp. 268–276, 1994.
[79]  D. Liu and P. K. Jimack, “A survey of parallel algorithms for fractal image compression,” Journal of Algorithms and Computational Technology, vol. 1, no. 2, pp. 171–186, 2007.
[80]  Z. Xiong, A. D. Liveris, and S. Cheng, “Distributed source coding for sensor networks,” IEEE Signal Processing Magazine, vol. 21, no. 5, pp. 80–94, 2004.
[81]  P. L. Dragotti and M. Gastpar, Dsitributed Source Coding: Theory, Algorithms and Applications, Elsevier, 2009.
[82]  A. D. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Transactions on Information Theory, vol. IT-22, no. 1, pp. 1–10, 1976.
[83]  K. Y. Chow, K. S. Lui, and E. Y. Lam, “Efficient on-demand image transmission in visual sensor networks,” Eurasip Journal on Advances in Signal Processing, vol. 2007, Article ID 95076, 2007.
[84]  R. Wagner, R. Nowak, and R. Baraniuk, “Distributed image compression for sensor networks using correspondence analysis and super-resolution,” in Proceedings of the International Conference on Image Processing (ICIP '03), pp. 597–600, September 2003.
[85]  Q. Lu, W. Luo, J. Wang, and B. Chen, “Low-complexity and energy efficient image compression scheme for wireless sensor networks,” Computer Networks, vol. 52, no. 13, pp. 2594–2603, 2008.
[86]  W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication protocol for wireless microsensor networks,” in Proceedings of the 33rd Annual Hawaii International Conference on System Siences (HICSS), p. 223, January 2000.
[87]  H. Wu and A. A. Abouzeid, “Energy efficient distributed image compression in resource-constrained multihop wireless networks,” Computer Communications, vol. 28, no. 14, pp. 1658–1668, 2005.
[88]  E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006.
[89]  D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.
[90]  J. Meng, H. Li, and Z. Han, “Sparse event detection in wireless sensor networks using compressive sensing,” in Proceedings of the 43rd Annual Conference on Information Sciences and Systems (CISS '09), pp. 181–185, March 2009.
[91]  M. B. Wakin, J. N. Laska, M. F. Duarte et al., “Compressive imaging for video representation and coding,” in Proceedings of the 25th PCS: Picture Coding Symposium (PCS '06), April 2006.
[92]  W. Barakat and R. Saliba, “Compressive sensing for multimedia communications in wireless sensor networks,” Tech. Rep. MDDSP Project Final Report, 2008.
[93]  B. Han, F. Wu, and D. Wu Volume, “Image representation by compressive sensing for visual sensor networks,” Journal of Visual Communication and Image Representation, vol. 21, no. 4, pp. 325–333, 2010.
[94]  M. F. Duarte, M. A. Davenport, D. Takbar et al., “Single-pixel imaging via compressive sampling: building simpler, smaller, and less-expensive digital cameras,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 83–91, 2008.
[95]  L. Gan, T. T. Do, and T. D. Tran, “Fast compressive imaging using scrambled block Hadamard ensemble,” in Proceedings of the European Signal Processing Conference (EUSIPCO '08), Lausanne, Switzerland, August 2008.
[96]  P. Chen, P. Ahammad, C. Boyer, et al., “CITRIC: a low-bandwidth wireless camera network platform,” in Proceedings of the 2nd ACM/IEEE International Conference on Distributed Smart Cameras, pp. 1–10, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133