全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Logical Sensor Network: An Abstraction of Sensor Data Processing over Multidomain Sensor Network

DOI: 10.5402/2012/234251

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper focuses on a sensor network virtualization over multidomain sensor network and proposes an abstraction called “logical sensor network (LSN)” for sensor data processing. In the proposed abstraction, processing is a directed acyclic graph that consists of nodes and streams, which represents a small data processor and communication rules between them, respectively. We have added a notion of a trigger to this graph. A trigger represents a timing of the process execution. We have implemented the middleware named LSN-Middle to run a virtualized sensor network and proved its feasibility. 1. Introduction In a future where sensor networks are ubiquitously around us, applications should interact with multiple sensor networks that belong to different domains. Many efforts to make a platform that provides applications a transparent access to sensor data from existing sensor networks with different domains have been made [1–8]. We call this type of platforms “multidomain sensor network (MDSN).” Sensor networks in MDSN include various types of hardware, are organized by different institutions, and are distributed over the world. Utilizing MDSN from applications has two undesirable features that are (1) sensor heterogeneity and (2) raw sensor data delivery. This means applications can only receive raw sensor data with heterogeneous data units and they are responsible for the data translation or the data preprocessing phases. This is caused by a feature that programmers cannot neither configure nor program the sensor networks which consist MDSN. Thus, we consider that an application development over MDSN will be more complicated than the development over a single homogeneous sensor network on which an application programmer has a full configurability and programmability. For these undesirable features of MDSN, a virtualization of a sensor network can be an effective solution. Sensor network virtualization over MDSN can provide a dedicated sensor network to each application as shown in Figure 1. This figure illustrates application and physical, multidomain and virtualized sensor network. MDSN aggregates physical sensor networks that have been installed for specific purposes [9–13]. And virtualized sensor networks recompose MDSN and create sensor networks for arbitrary applications with arbitrary specifications. Many researchers have been investigating middleware which offers applications to create a virtualized sensor network [14–17]. The middleware allows an application to define a virtualized sensor network. The application can be developed and operated as

References

[1]  L. Luo, A. Kansal, S. Nath, and F. Zhao, “Sharing and exploring sensor streams over geocentric interfaces,” in Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS '08), pp. 250–259, November 2008.
[2]  Y. Shiraishi, N. Thepvilojanapong, Y. Tamura et al., “TomuDB: multi-resolution queries in heterogeneous sensor networks through overlay network,” in Proceedings of the 5th ACM International Conference on Embedded Networked Sensor Systems (SenSys '07), pp. 419–420, ACM, November 2007.
[3]  H. Esaki and H. Sunahara, “Live E! project; Sensing the earth with internet weather stations,” in Proceedings of the International Symposium on Applications and the Internet (SAINT '07), IEEE Computer Society, Hiroshima, Japan, January 2007.
[4]  M. Isomura, T. Riedel, C. Decker, M. Beigl, and H. Horiuchi, Sharing Sensor Networks, IEEE, 2006.
[5]  “Pachube:connecting environments, patching the planet,” 2010, http://www.pachube.com/.
[6]  N. Namatame, Y. Ding, T. Riedel, H. Tokuda, T. Miyaki, and M. Beigl, “A distributed resource management architecture for interconnecting web-of-things using uBox,” in Proceedings of the 2nd International Workshop on the Web of Things (WoT '11), ACM, June 2011.
[7]  A. Rowe, M. E. Berges, G. Bhatia et al., “Sensor andrew: large-scale campus-wide sensing and actuation,” IBM Journal of Research and Development, vol. 55, no. 1.2, pp. 6:1–6:14, 2011.
[8]  V. Gupta, A. Poursohi, and P. Udupi, “Sensor.Network: an open data exchange for the web of things,” in Proceedings of the 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM '10), pp. 753–755, April 2010.
[9]  V. Dyo, S. A. Ellwood, D. W. MacDonald et al., “Evolution and sustainability of a wildlife monitoring sensor network,” in Proceedings of the 8th ACM International Conference on Embedded Networked Sensor Systems (SenSys '10), pp. 127–140, ACM, November 2010.
[10]  K. Na, Y. Kim, and H. Cha, “Acoustic sensor network-based parking lot surveillance system,” in Wireless Sensor Networks, U. Roedig and C. Sreenan, Eds., vol. 5432 of Lecture Notes in Computer Science, pp. 247–262, Springer, Berlin, Germany.
[11]  G. Tolle, J. Polastre, R. Szewczyk, et al., “A macroscope in the redwoods,” in Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems (SenSys '05), pp. 51–63, ACM, 2005.
[12]  J. Lu, T. Sookoor, V. Srinivasan et al., “The smart thermostat: using occupancy sensors to save energy in homes,” in Proceedings of the 9th ACM International Conference on Embedded Networked Sensor Systems (SenSys '11), pp. 211–224, ACM, November 2011.
[13]  M. Ito, Y. Katagiri, M. Ishikawa, and H. Tokuda, “Airy notes: an experiment of microclimate monitoring in shinjuku gyoen garden,” in Proceedings of the 4th International Conference on Networked Sensing Systems (INSS '07), pp. 260–266, June 2007.
[14]  S. Kabadayi, A. Pridgen, and C. Julien, “Virtual sensors: abstracting data from physical sensors,” in Proceedings of the International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM '06), pp. 587–592, IEEE Computer Society, June 2006.
[15]  K. Aberer, M. Hauswirth, and A. Salehi, “A middleware for fast and flexible sensor network deployment,” in Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB ’06), pp. 1119–1202, VLDB Endowment, 2006.
[16]  K. Aberer, M. Hauswirth, and A. Salehi, “Infrastructure for data processing in large-scale interconnected sensor networks,” in Proceedings of the 8th International Conference on Mobile Data Management (MDM '07), pp. 198–205, May 2007.
[17]  S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and D. Culler, “SMAP—a simple measurement and actuation profile for physical information,” in Proceedings of the 8th ACM International Conference on Embedded Networked Sensor Systems (SenSys '10), pp. 197–210, ACM, November 2010.
[18]  Sensor Modeling Language (Sensorml), 2012, http://www.opengeospatial.org/standards/sensorml.
[19]  Y. Tian and E. Ekici, “Cross-layer collaborative In-network processing in multihop wireless sensor networks,” IEEE Transactions on Mobile Computing, vol. 6, no. 3, pp. 297–310, 2007.
[20]  K. Masaya, “D-jenga: a parallel distributed bayesian inference mechanism on wireless sensor nodes,” in Proceedings of the International Conference on Networked Sensing Systems, 2006.
[21]  C. Lombriser, D. Roggen, M. St?d’ger, and G. Tr??ster, “Titan: a tiny task network for dynamically reconfigurable heterogeneous sensor networks,” in Kommunikation in Verteilten Systemen (KiVS), Informatik Aktuell, T. Braun, G. Carle, and B. Stiller, Eds., pp. 127–138, Springer, Berlin, Germany, 2007.
[22]  A. Bakshi and V. K. Prasanna, “The abstract task graph: a methodology for architectureindependent programming of networked sensor systems,” in Proceedings of the Workshop on End-to-end Sense-and-respond Systems (EESR '05), 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133