全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Stronger Correlation between Interleukin 18 and Soluble Fas in Lupus Nephritis Compared with Mild Lupus

DOI: 10.1155/2013/850851

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lupus nephritis (LN) is a major cause of morbidity in patients with systemic lupus erythematosus (SLE). Several cytokines and apoptotic markers such as IL-18 and soluble Fas (sFas) have been assumed to play a role in the pathogenesis of LN. Previous studies confirmed that serum concentrations of sFas and IL-18 are increased in SLE. However, only a few studies have suggested a possible correlation between IL-18 and sFas. This study was planned to continue our previous study on the correlation between those markers to evaluate this correlation in LN. Thirty-two patients with only LN and 46 patients without any major organ involvement participated in this study. SLEDAI score (except for scores related to nephritis) was the same in these two groups. In both groups, patients with any other major organ involvement were excluded. We found a significant rise in the serum concentrations of sFas ( ) and IL-18 ( ) in patients with proteinuria compared to those without it. This study showed that the correlation between sFas and IL-18 in LN ( , ) is significantly stronger than it is in mild SLE ( , ) with similar nonrenal SLEDAI score ( , ). Between these two serum markers, sFas is the only predictor of proteinuria. 1. Introduction Lupus nephritis is a serious complication of SLE. Proteinuria is the most frequently observed abnormality in lupus nephritis [1, 2]. Although the precise etiology of LN is not entirely known, several factors have been proposed in the initiation and progression of LN. Two important factors that are suggested to be involved in that are apoptosis imbalance [3] and overproduction of several cytokines like IL-18 [4]. Researchers have emphasized the pathogenic function of IL-18 and Fas/Fas ligand pathway in autoimmune-related diseases like lupus [5–7]. Besides, recent evidence suggests that IL-18- and Fas-mediated apoptosis may relate to each other by the proapoptotic effects of IL-18. IL-18 is able to enhance Fas/Fas ligand expression in specific cells [8, 9]. Fas (Apo/1-CD95) and its ligand belong to the tumor necrosis factor/nerve growth factor superfamily [10–16]. IL-18, a TNF-α inducer and Fas/Fas ligand expressor, is a crucial factor for the autoimmune process [5, 8, 9, 17–19]. Although the role of IL-18 and sFas has been elucidated separately, in the pathogenesis of LN [1, 4, 20], there is little evidence about the correlation between sFas and IL-18 in autoimmune diseases. Only a few studies mentioned that infections could raise serum sFas and IL-18 concentrations through increasing and/or enhancing apoptotic turnover of defensive cells

References

[1]  R. Saxena, T. Mahajan, and C. Mohan, “Lupus nephritis: current update,” Arthritis Research & Therapy, no. 13, article 240, 2011.
[2]  F. A. Houssiau, C. Vasconcelos, D. D'Cruz et al., “Immunosuppressive therapy in lupus nephritis: the Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide,” Arthritis & Rheumatism, vol. 46, no. 8, pp. 2121–2131, 2002.
[3]  M. Alecu, G. Coman, and S. Alecu, “Serological levels of apoptotic bodies, sFAS and TNF in lupus erythematosus,” Romanian Journal of Internal Medicine, vol. 38, pp. 83–88, 2000.
[4]  A. Gigante, M. L. Gasperini, A. Afeltra et al., “Cytokines expression in SLE nephritis,” European Review for Medical and Pharmacological Sciences, vol. 15, no. 1, pp. 15–24, 2011.
[5]  J. M. Kahlenberg, S. G. Thacker, C. C. Berthier, C. D. Cohen, M. Kretzler, and M. J. Kaplan, “Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus,” The Journal of Immunology, vol. 187, no. 11, pp. 6143–6156, 2011.
[6]  K. Nozawa, N. Kayagaki, Y. Tokano, H. Yagita, K. Okumura, and H. Hasimoto, “Soluble Fas (APO-1, CD95) and soluble Fas ligand in rheumatic diseases,” Arthritis & Rheumatism, vol. 40, no. 6, pp. 1126–1129, 1997.
[7]  L. E. Munoz, C. Van Bavel, S. Franz, J. Berden, M. Herrmann, and J. van der Vlag, “Apoptosis in the pathogenesis of systemic lupus erythematosus,” Lupus, vol. 17, no. 5, pp. 371–375, 2008.
[8]  H. Kitaura, M. Tatamiya, N. Nagata et al., “IL-18 induces apoptosis of adherent bone marrow cells in TNF-α mediated osteoclast formation in synergy with IL-12,” Immunology Letters, vol. 107, no. 1, pp. 22–31, 2006.
[9]  T. Ohtsuki, M. J. Micallef, K. Kohno, T. Tanimoto, M. Ikeda, and M. Kurimoto, “Interleukin 18 enhances Fas ligand expression and induces apoptosis in Fas-expressing human myelomonocytic KG-1 cells,” Anticancer Research, vol. 17, no. 5A, pp. 3253–3258, 1997.
[10]  M. Bijl, G. Horst, P. C. Limburg, and C. G. M. Kallenberg, “Fas expression on peripheral blood lymphocytes in systemic lupus erythematosus (SLE): relation to lymphocyte activation and disease activity,” Lupus, vol. 10, no. 12, pp. 866–872, 2001.
[11]  M. Sahin, O. Aydintug, S. E. Tunc, H. Tutkak, and M. Naziro?lu, “Serum soluble Fas levels in patients with autoimmune rheumatic diseases,” Clinical Biochemistry, vol. 40, no. 1-2, pp. 6–10, 2007.
[12]  M. Sahebari, M. R. Hatef, Z. Rezaieyazdi, M. Abbasi, B. Abbasi, and M. Mahmoudi, “Correlation between serum levels of soluble fas (CD95/Apo-1) with disease activity in systemic lupus erythematosus patients in Khorasan, Iran,” Archives of Iranian Medicine, vol. 13, no. 2, pp. 135–142, 2010.
[13]  J. Cheng, T. Zhou, C. Liu et al., “Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule,” Science, vol. 263, no. 5154, pp. 1759–1762, 1994.
[14]  F. Silvestris, D. Grinello, M. Tucci, P. Cafforio, and F. Dammacco, “Enhancement of T cell apoptosis correlates with increased serum levels of soluble Fas (CD95/Apo-I) in active lupus,” Lupus, vol. 12, no. 1, pp. 8–14, 2003.
[15]  E. Telegina, T. Reshetnyak, A. Moshnikova et al., “A possible role of Fas-ligand-mediated “reverse signaling” in pathogenesis of rheumatoid arthritis and systemic lupus erythematosus,” Immunology Letters, vol. 122, no. 1, pp. 12–17, 2009.
[16]  F. Silvestris, P. Cafforio, M. Tucci, A. del Prete, and F. Dammacco, “VEINCTR-N, an immunogenic epitope of Fas (CD95/Apo-I), and soluble Fas enhance T-cell apoptosis in vitro. II. Functional analysis and possible implications in HIV-1 disease,” Molecular Medicine, vol. 6, no. 6, pp. 509–526, 2000.
[17]  H. P. Carroll, V. Paunovi?, and M. Gadina, “Signalling, inflammation and arthritis: crossed signals: the role of interleukin-15 and -18 in autoimmunity,” Rheumatology, vol. 47, no. 9, pp. 1269–1277, 2008.
[18]  P. Reddy, “Interleukin-18: recent advances,” Current Opinion in Hematology, vol. 11, no. 6, pp. 405–410, 2004.
[19]  T. Dao, K. Ohashi, T. Kayano, M. Kurimoto, and H. Okamura, “Interferon-γ-inducing factor, a novel cytokine, enhances Fas ligand-mediated cytotoxicity of murine T helper 1 cells,” Cellular Immunology, vol. 173, no. 2, pp. 230–235, 1996.
[20]  C. Shimizu, T. Fujita, Y. Fuke et al., “High circulating levels of interleukin-18 binding protein indicate the severity of glomerular involvement in systemic lupus erythematosus,” Modern Rheumatology, vol. 22, no. 1, pp. 73–79, 2012.
[21]  E. Marín-Serrano, C. Rodríguez-Ramos, F. Diaz, L. Martín-Herrera, and J. Girón-González, “Modulation of the anti-inflammatory interleukin 10 and of proapoptotic IL-18 in patients with chronic hepatitis C treated with interferon alpha and ribavirin,” Journal of Viral Hepatitis, vol. 13, no. 4, pp. 230–234, 2006.
[22]  H. Nakae, Y. J. Zheng, H. Wada, K. Tajimi, and S. Endo, “Involvement of IL-18 and soluble Fas in patients with postoperative hepatic failure,” European Surgical Research, vol. 35, no. 2, pp. 61–66, 2003.
[23]  S. El-Masry, M. Lotfy, W. A. Nasif, I. M. El-Kady, and M. Al-Badrawy, “Elevated serum level of interleukin (IL)-18, interferon (IFN)-c and soluble fas in patients with pulmonary complications in tuberculosis,” Acta Microbiologica et Immunologica Hungarica, vol. 54, no. 1, pp. 65–77, 2007.
[24]  S. Imai, N. Sato, Y. Inoue, and S. Endo, “A study of interleukin 18 and sFas in septic multiple organ dysfunction syndrome,” Journal of the Iwate Medical Association, vol. 57, no. 5, pp. 497–503, 2005.
[25]  M. Kaizu, Y. Ami, T. Nakasone et al., “Higher levels of IL-18 circulate during primary infection of monkeys with a pathogenic SHIV than with a nonpathogenic SHIV,” Virology, vol. 313, no. 1, pp. 8–12, 2003.
[26]  A. Sharma, A. Chakraborti, A. Das, R. K. Dhiman, and Y. Chawla, “Elevation of interleukin-18 in chronic hepatitis C: implications for hepatitis C virus pathogenesis,” Immunology, vol. 128, no. 1, part 2, pp. e514–e522, 2009.
[27]  D. Y. Chen, T. Y. Hsieh, C. W. Hsieh, F. J. Lin, and J. L. Lan, “Increased apoptosis of peripheral blood lymphocytes and its association with interleukin-18 in patients with active untreated adult-onset Still's disease,” Arthritis Care and Research, vol. 57, no. 8, pp. 1530–1538, 2007.
[28]  M. Sahebari, Z. Rezaieyazdi, M. J. Nakhjavani, M. Hatef, M. Mahmoudi, and S. Akhlaghi, “Correlation between serum concentrations of soluble Fas (CD95/Apo-1) and IL-18 in patients with systemic lupus erythematosus,” Rheumatology International, vol. 32, no. 3, pp. 601–606, 2012.
[29]  P. Y. Tsai, S. M. Ka, J. M. Chang, et al., “Antroquinonol differentially modulates T cells activity, reduces IL-18 production, but enhances Nrf2 activation in accelerated severe lupus nephritis,” Arthritis & Rheumatism, vol. 64, no. 1, pp. 232–242, 2012.
[30]  J. Faust, J. Menke, J. Kriegsmann et al., “Correlation of renal tubular epithelial cell-derived interleukin-18 up-regulation with disease activity in MRL-Faslpr mice with autoimmune lupus nephritis,” Arthritis & Rheumatism, vol. 46, no. 11, pp. 3083–3095, 2002.
[31]  J. H. Hao, D. Q. Ye, G. Q. Zhang et al., “Elevated levels of serum soluble Fas are associated with organ and tissue damage in systemic lupus erythematosus among Chinese,” Archives of Dermatological Research, vol. 297, no. 7, pp. 329–332, 2006.
[32]  N. A. Fathi, M. R. Hussein, H. I. Hassan, E. Mosad, H. Galal, and N. A. Afifi, “Glomerular expression and elevated serum Bcl-2 and Fas proteins in lupus nephritis: preliminary findings,” Clinical and Experimental Immunology, vol. 146, no. 2, pp. 339–343, 2006.
[33]  C. Miret, J. Font, R. Molina et al., “Relationship of oncogenes (sFas, Bcl-2) and cytokines (IL-10, alfa-TNF) with the activity of systemic lupus erythematosus,” Anticancer Research, vol. 21, no. 4B, pp. 3053–3059, 2001.
[34]  E. M. Tan, A. S. Cohen, and J. F. Fries, “The 1982 revised criteria for the classification of systemic lupus erythrematosus,” Arthritis & Rheumatism, vol. 25, no. 11, pp. 1271–1277, 1982.
[35]  M. A. Dalboni, C. Sardenberg, M. C. Andreoli et al., “Soluble Fas: a novel marker of inflammation in uremia,” Artificial Organs, vol. 27, no. 8, pp. 687–691, 2003.
[36]  G. C. Tsokos, “Systemic lupus erythematosus,” The New England Journal of Medicine, vol. 365, no. 22, pp. 2110–2121, 2011.
[37]  D. Liang, W. Ma, C. Yao, H. Liu, and X. Chen, “Imbalance of interleukin 18 and interleukin 18 binding protein in patients with lupus nephritis,” Cellular & Molecular Immunology, vol. 3, no. 4, pp. 303–306, 2006.
[38]  N. Calvani, H. B. Richards, M. Tucci, G. Pannarale, and F. Silvestris, “Up-regulation of IL-18 and predominance of a Th1 immune response is a hallmark of lupus nephritis,” Clinical and Experimental Immunology, vol. 138, no. 1, pp. 171–178, 2004.
[39]  T. Tsukinoki, H. Sugiyama, R. Sunami et al., “Mesangial cell Fas ligand: upregulation in human lupus nephritis and NF-κB-mediated expression in cultured human mesangial cells,” Clinical and Experimental Nephrology, vol. 8, no. 3, pp. 196–205, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133