全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Low-Level Laser Therapy, 660?nm, in Experimental Septic Arthritis

DOI: 10.1155/2013/341832

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effectiveness of low-level laser therapy (LLLT) in the presence of an infectious process has not been well elucidated. The aim of the study was to evaluate the effects of LLLT in an experimental model of septic arthritis. Methods. Twenty-one Wistar rats were divided as follows: control group, no bacteria; placebo group, bacteria were inoculated; Treated group, bacteria were injected and treatment with LLLTwas performed. To assess nociception, a von Frey digital analgesimeter was applied. Synovial fluid was streaked to analyze bacterial growth. The standard strain of S. aureus was inoculated in the right knee. LLLT was performed with 660?nm, 2?J/cm2, over 10 days. After treatment, the knees were fixed and processed for morphological analysis by light microscopy. Results. It was found that nociception increases in the right knee. There was a lack of results for the seeding of the synovial fluid. The morphological analysis showed slight recovery areas in the articular cartilage and synovia; however, there was the maintenance of the inflammatory infiltrate. Conclusion. The parameters used were not effective in the nociception reduction, even with the slight tissue recovery due to the maintenance of inflammatory infiltrate, but produced no change in the natural history of resolution of the infectious process. 1. Introduction Septic arthritis is defined as bacterial invasion of the synovial space, and the knee is the most commonly affected joint in adults [1]. Also, the most frequent etiologic agent is Staphylococcus aureus. Joints are affected in several ways, such as hematogenous dissemination, penetrating trauma, contamination during surgical procedures, outbreaks of osteomyelitis, or abscess. Because it is an infectious process, it presents the classic signs of inflammation (pain, heat, swelling, and decreased range of motion), as well as fever and malaise [2]. Its treatment is difficult because it relies on the use of antibiotics, which have low penetration in the joint space [3], what would justify the use of an alternative therapy. The effectiveness of laser therapy in inflammatory signals has been demonstrated in a variety of experimental models. This physical feature has helped in controlling chemical mediators that play an important role in generating the inflammatory process, such as reduced expression of COX-2 [4], decrease in concentration of prostaglandin E2 (PGE2) [5], analgesia by the peripheral release of endogenous opioids [6], and edema reduction and anti-inflammatory action probably due to the release of adrenal hormones [7]. However,

References

[1]  S. Visser and J. Tupper, “Septic until proven otherwise approach to and treatment of the septic joint in adult patients,” Canadian Family Physician, vol. 55, no. 4, pp. 374–375, 2009.
[2]  M. E. Shirtliff and J. T. Mader, “Acute septic arthritis,” Clinical Microbiology Reviews, vol. 15, no. 4, pp. 527–544, 2002.
[3]  W. Wang, S. Lee, T. Chiueh, and J. Lu, “Molecular and phenotypic characteristics of methicillin-resistant and vancomycin-intermediate Staphylococcus aureus isolates from patients with septic arthritis,” Journal of Clinical Microbiology, vol. 47, no. 11, pp. 3617–3623, 2009.
[4]  R. Albertini, F. Aimbire, A. B. Villaverde, J. A. Silva Jr., and M. S. Costa, “COX-2 mRNA expression decreases in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low level laser therapy,” Inflammation Research, vol. 56, no. 6, pp. 228–229, 2007.
[5]  J. M. Bjordal, R. A. B. Lopes-Martins, and V. V. Iversen, “A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations,” British Journal of Sports Medicine, vol. 40, no. 1, pp. 76–80, 2006.
[6]  S. Hagiwara, H. Iwasaka, A. Hasegawa, and T. Noguchi, “Pre-irradiation of blood by gallium aluminum arsenide (830?nm) low-level laser enhances peripheral endogenous opioid analgesia in rats,” Anesthesia and Analgesia, vol. 107, no. 3, pp. 1058–1063, 2008.
[7]  R. Albertini, F. S. C. Aimbire, F. I. Correa et al., “Effects of different protocol doses of low power gallium-aluminum-arsenate (Ga-Al-As) laser radiation (650?nm) on carrageenan induced rat paw ooedema,” Journal of Photochemistry and Photobiology B, vol. 74, no. 2-3, pp. 101–107, 2004.
[8]  E. L. Nussbaum, L. Lilge, and T. Mazzulli, “Effects of 630-, 660-, 810-, and 905?nm laser irradiation delivering radiant exposure of 1–50?J/cm2 on three species of bacteria in vitro,” Journal of Clinical Laser Medicine and Surgery, vol. 20, no. 6, pp. 325–333, 2002.
[9]  E. L. Nussbaum, L. Lilge, and T. Mazzulli, “Effects of 810?nm laser irradiation on in vitro growth of bacteria: comparison of continuous wave and frequency modulated light,” Lasers in Surgery and Medicine, vol. 31, no. 5, pp. 343–351, 2002.
[10]  K. Nandakumar, H. Obika, T. Shinozaki, T. Ooie, A. Utsumi, and T. Yano, “Inhibition of bacterial attachment by pulsed Nd:YAG laser irradiations: an in vitro study using marine biofilm-forming bacterium Pseudoalteromonas carrageenovora,” Biotechnology and Bioengineering, vol. 80, no. 5, pp. 552–558, 2002.
[11]  K. Nandakumar, H. Obika, A. Utsumi, T. Ooie, and T. Yano, “Molecular level damages of low power pulsed laser radiation in a marine bacterium Pseudoalteromonas carrageenovora,” Letters in Applied Microbiology, vol. 42, no. 5, pp. 521–526, 2006.
[12]  R. G. Benvindo, G. Braun, A. R. Carvalho, and G. R. F. Bertolini, “Efeitos da terapia fotodinamica e de uma única aplica??o de laser de baixa potência em bactérias in vitro,” Fisioterapia E Pesquisa, vol. 15, no. 1, pp. 53–57, 2008.
[13]  F. Coutinho, V. Giordano, C. M. Santos et al., “O efeito do laser de baixa energia no crescimento bacteriano ‘in vitro’,” Revista Brasileira De Ortopedia, vol. 42, no. 8, pp. 248–253, 2007.
[14]  K. Kawamoto, N. Senda, K. Shimada, K. Ito, Y. Hirano, and S. Murai, “Antibacterial effect of yellow He-Ne laser irradiation with crystal violet solution on Porphyromonas gingivalis: an evaluation using experimental rat model involving subcutaneous abscess,” Lasers in Medical Science, vol. 15, no. 4, pp. 257–262, 2000.
[15]  T. M. Cunha, W. A. Verri Jr., G. G. Vivancos et al., “An electronic pressure-meter nociception paw test for mice,” Brazilian Journal of Medical and Biological Research, vol. 37, no. 3, pp. 401–407, 2004.
[16]  L. C. Junqueira and L. M. M. S. Junqueira, Técnicas Básicas De Citologia E Histologia, Santos, S?o Paulo, Brazil, 1983.
[17]  A. Ateschrang, D. Albrecht, S. Schroeter, K. Weise, and J. Dolderer, “Current concepts review: septic arthritis of the knee pathophysiology, diagnostics, and therapy,” Wiener Klinische Wochenschrift, vol. 123, no. 7-8, pp. 191–197, 2011.
[18]  A. Hamel, J. Caillon, C. Jacqueline et al., “Intermittent active motion versus immobilization in the treatment of Staphylococcus aureus—induced arthritis in a rabbit model,” Journal of Children's Orthopaedics, vol. 2, no. 6, pp. 491–495, 2008.
[19]  L. Henningsson, P. Jirholt, C. Lindholm et al., “Interleukin-17A during local and systemic Staphylococcus aureus-induced arthritis in mice,” Infection and Immunity, vol. 78, no. 9, pp. 3783–3790, 2010.
[20]  S. Majumdar, K. Dutta, S. K. Manna, A. Basu, and B. Bishayi, “Possible protective role of chloramphenicol in TSST-1 and coagulase-positive Staphylococcus aureus-induced septic arthritis with altered levels of inflammatory mediators,” Inflammation, vol. 34, no. 4, pp. 269–282, 2011.
[21]  D. Varoga, E. Klostermeier, F. Paulsen et al., “The antimicrobial peptide HBD-2 and the Toll-like receptors-2 and -4 are induced in synovial membranes in case of septic arthritis,” Virchows Archiv, vol. 454, no. 6, pp. 685–694, 2009.
[22]  A. Andriolo, R. P. Costa, and N. F. Novo, “Pró-calcitonina e proteína C reativa em processos infecciosos graves,” Jornal Brasileiro De Patologia e Medicina Laboratorial, vol. 40, no. 3, pp. 169–174, 2004.
[23]  F. A. C. Vaz, M. E. J. Ceccon, E. M. A. Diníz, and F. Valdetaro, “Indicadores imunológicos (IgM e proteína C-reativa) nas infec??es neonatais,” Revista Da Associa??o Médica Brasileira, vol. 44, no. 3, pp. 185–195, 1998.
[24]  R. Albertini, A. B. Villaverde, F. Aimbire et al., “Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660?nm and 684?nm) in carrageenan-induced rat paw edema,” Journal of Photochemistry and Photobiology B, vol. 89, no. 1, pp. 50–55, 2007.
[25]  E. Laakso and P. J. Cabot, “Nociceptive scores and endorphin-containing cells reduced by low-level laser therapy (LLLT) in inflamed paws of Wistar rat,” Photomedicine and Laser Surgery, vol. 23, no. 1, pp. 32–35, 2005.
[26]  M. Bayat, M. M. Vasheghani, N. Razavi, S. Taheri, and M. Rakhshan, “Effect of low-level laser therapy on the healing of second-degree burns in rats: a histological and microbiological study,” Journal of Photochemistry and Photobiology B, vol. 78, no. 2, pp. 171–177, 2005.
[27]  M. Bayat, M. M. Vasheghani, and N. Razavi, “Effect of low-level helium-neon laser therapy on the healing of third-degree burns in rats,” Journal of Photochemistry and Photobiology B, vol. 83, no. 2, pp. 87–93, 2006.
[28]  A. Ezzati, M. Bayat, and A. Khoshvaghti, “Low-level laser therapy with a pulsed infrared laser accelerates second-degree burn healing in rat: a clinical and microbiologic study,” Photomedicine and Laser Surgery, vol. 28, no. 5, pp. 603–611, 2010.
[29]  N. R. S. Santos, J. B. De M. Sobrinho, P. F. Almeida et al., “Influence of the combination of infrared and red laser light on the healing of cutaneous wounds infected by Staphylococcus aureus,” Photomedicine and Laser Surgery, vol. 29, no. 3, pp. 177–182, 2011.
[30]  M. M. Vasheghani, M. Bayat, M. Dadpay, M. Habibie, and F. Rezaei, “Low-level laser therapy using 80-Hz pulsed infrared diode laser accelerates third-degree burn healing in rat,” Photomedicine and Laser Surgery, vol. 27, no. 6, pp. 959–964, 2009.
[31]  G. ?. Kaya, M. Kaya, N. Gürsan, E. Kire??i, M. Güng?rmü?, and H. Balta, “The use of 808?nm light therapy to treat experimental chronic osteomyelitis induced in rats by methicillin-resistant Staphylococcus aureus,” Photomedicine and Laser Surgery, vol. 29, no. 6, pp. 405–412, 2011.
[32]  T. Karu, “Primary and secondary mechanisms of action of visible to near-IR radiation on cells,” Journal of Photochemistry and Photobiology B, vol. 49, no. 1, pp. 1–17, 1999.
[33]  B. Beyreuther, N. Callizot, and T. St?hr, “Antinociceptive efficacy of lacosamide in the monosodium iodoacetate rat model for osteoarthritis pain,” Arthritis Research and Therapy, vol. 9, article R14, 2007.
[34]  E. G. Melo, V. A. Nunes, C. M. F. Rezende, M. G. Gomes, C. Malm, and V. A. Gheller, “Sulfato de condroitina e hialuronato de sódio no tratamento da doen?a articular degenerativa em c?es. Estudo histológico da cartilagem articular e membrana sinovial,” Arquivos Brasileiros De Medicina Veterinária e Zootecnia, vol. 60, no. 1, pp. 83–92, 2008.
[35]  F. P. Carlos, E. L. V. Silva, T. F. Q. Almeida, S. F. Zamuner, and S. R. Zamuner, “Estudo histológico do efeito da terapia LED (Light Emitting Diode) na membrana sinovial após indu??o da artrite aguda em joelhos de ratos,” Revista Terapia Manual, vol. 9, no. 46, pp. 707–711, 2011.
[36]  V. Kumar and J. A. Perkins, Robbins e Cotran patologia: bases patológicas das doen?as, Elsevier, Rio de Janeiro, Brazil, 8th edition, 2010.
[37]  A. L. Kierszenbaum, Histologia e Biologia Celular: Uma Introdu??o à Patologia, Elsevier, Rio de Janeiro, Brazil, 2004.
[38]  S. A. Allard, M. T. Bayliss, and R. N. Maini, “The synovium-cartilage junction of the normal human knee. Implications for joint destruction and repair,” Arthritis and Rheumatism, vol. 33, no. 8, pp. 1170–1179, 1990.
[39]  G. N. Smith Jr., S. L. Myers, K. D. Brandt, E. A. Mickler, and M. E. Albrecht, “Diacerhein treatment reduces the severity of osteoarthritis in the canine cruciate-deficiency model of osteoarthritis,” Arthritis e Rheumatism, vol. 42, pp. 545–554, 1999.
[40]  N. V. Podworny, R. A. Kandel, R. C. Renlund, and M. D. Grynpas, “Partial chondroprotective effect of zoledronate in a rabbit model of inflammatory arthritis,” Journal of Rheumatology, vol. 26, no. 9, pp. 1972–1982, 1999.
[41]  D. W. Puett and M. R. Griffin, “Published trials of nonmedicinal and noninvasive therapies for hip and knee osteoarthritis,” Annals of Internal Medicine, vol. 121, no. 2, pp. 133–140, 1994.
[42]  Y. Lin, M. Huang, C. Chai, and R. Yang, “Effects of helium-neon laser on levels of stress protein and arthritic histopathology in experimental osteoarthritis,” American Journal of Physical Medicine and Rehabilitation, vol. 83, no. 10, pp. 758–765, 2004.
[43]  D. Baeten, F. De Keyser, P. Demetter et al., “Comparative study of the synovial histology in rheumatoid arthritis, spondyloarthropathy, and osteoarthritis: influence of disease duration and activity,” Annals of the Rheumatic Diseases, vol. 59, no. 12, pp. 945–953, 2000.
[44]  R. I. Pavlovich and J. Lubowitz, “Current concepts in synovial tissue of the knee joint,” Orthopedics, vol. 31, no. 2, pp. 160–163, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133