全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Role of Endothelial to Mesenchymal Transition in the Pathogenesis of the Vascular Alterations in Systemic Sclerosis

DOI: 10.1155/2013/835948

Full-Text   Cite this paper   Add to My Lib

Abstract:

The pathogenesis of Systemic Sclerosis (SSc) is extremely complex, and despite extensive studies, the exact mechanisms involved are not well understood. Numerous recent studies of early events in SSc pathogenesis have suggested that unknown etiologic factors in a genetically receptive host trigger structural and functional microvascular endothelial cell abnormalities. These alterations result in the attraction, transmigration, and accumulation of immune and inflammatory cells in the perivascular tissues, which in turn induce the phenotypic conversion of endothelial cells and quiescent fibroblasts into activated myofibroblasts, a process known as endothelial to mesenchymal transition or EndoMT. The activated myofibroblasts are the effector cells responsible for the severe and frequently progressive fibrotic process and the fibroproliferative vasculopathy that are the hallmarks of SSc. Thus, according to this hypothesis the endothelial and vascular alterations, which include the phenotypic conversion of endothelial cells into activated myofibroblasts, play a crucial role in the development of the progressive fibrotic process affecting skin and multiple internal organs. The role of endothelial cell and vascular alterations, the potential contribution of endothelial to mesenchymal cell transition in the pathogenesis of the tissue fibrosis, and fibroproliferative vasculopathy in SSc will be reviewed here. 1. Introduction Scleroderma or Systemic Sclerosis (SSc) is an autoimmune disease of unknown etiology characterized by progressive fibrosis of skin and multiple internal organs and prominent and often severe alterations in the microvasculature [1]. Although SSc is the third most common systemic inflammatory autoimmune disease and has the highest case-specific mortality among this group of idiopathic disorders, there is currently no effective disease-modifying therapy for SSc. Therefore, there is an urgent unmet need for the development of effective disease-modifying therapies to improve the devastating health consequences and high mortality caused by the disease. The cells responsible for the severe fibroproliferative process in SSc are activated myofibroblasts, a unique population of mesenchymal cells displaying unique biological functions including increased production of fibrillar type l and type lll collagens, initiation of expression of α-smooth muscle actin (α-SMA), a molecular marker of activated myofibroblasts, and reduction in the expression of genes encoding extracellular matrix (ECM)-degradative enzymes. The accumulation of myofibroblasts in

References

[1]  A. Gabrielli, E. V. Avvedimento, and T. Krieg, “Scleroderma,” The New England Journal of Medicine, vol. 360, no. 19, pp. 1989–2003, 2009.
[2]  S. A. Jimenez and C. T. Derk, “Following the molecular pathways toward an understanding of the pathogenesis of systemic sclerosis,” Annals of Internal Medicine, vol. 140, no. 1, pp. 37–50, 2004.
[3]  J. Varga and D. Abraham, “Systemic sclerosis: a prototypic multisystem fibrotic disorder,” Journal of Clinical Investigation, vol. 117, no. 3, pp. 557–567, 2007.
[4]  T. R. Katsumoto, M. L. Whitfield, and M. K. Connolly, “The pathogenesis of systemic sclerosis,” Annual Review of Pathology: Mechanisms of Disease, vol. 6, pp. 509–537, 2011.
[5]  C. P. Denton, C. M. Black, and D. J. Abraham, “Mechanisms and consequences of fibrosis in systemic sclerosis,” Nature Clinical Practice Rheumatology, vol. 2, pp. 134–144, 2006.
[6]  T. A. Wynn, “Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases,” Journal of Clinical Investigation, vol. 117, no. 3, pp. 524–529, 2007.
[7]  J. A. Varga and M. Trojanowska, “Fibrosis in systemic sclerosis,” Rheumatic Disease Clinics of North America, vol. 34, no. 1, pp. 115–143, 2008.
[8]  M. Matucci-Cerinic, B. Kahaleh, and F. M. Wigley, “Systemic sclerosis, (scleroderma, SSc) is a vascular disease,” Arthritis and Rheumatism, vol. 65, no. 8, pp. 1953–1962, 2013.
[9]  B. Kahaleh, “Vascular disease in scleroderma: mechanisms of vascular injury,” Rheumatic Disease Clinics of North America, vol. 34, no. 1, pp. 57–71, 2008.
[10]  M. Trojanowska, “Cellular and molecular aspects of vascular dysfunction in systemic sclerosis,” Nature Reviews Rheumatology, vol. 6, no. 8, pp. 453–460, 2010.
[11]  T. A. Wynn and T. R. Ramalingam, “Mechanisms of fibrosis: therapeutic translation for fibrotic disease,” Nature Medicine, vol. 18, pp. 1028–1040, 2012.
[12]  T. Krieg, D. Abraham, and R. Lafyatis, “Fibrosis in connective tissue disease: the role of the myofibroblast and fibroblast-epithelial cell interactions,” Arthritis Research and Therapy, vol. 9, supplement 2, article S4, 2007.
[13]  D. J. Abraham, B. Eckes, V. Rajkumar, and T. Krieg, “New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma,” Current Rheumatology Reports, vol. 9, no. 2, pp. 136–143, 2007.
[14]  T. Z. Kirk, M. E. Mark, C. C. Chua, B. H. Chua, and M. D. Mayes, “Myofibroblasts from scleroderma skin synthesize elevated levels of collagen and tissue inhibitor of metalloproteinase (TIMP-1) with two forms of TIMP-1,” The Journal of Biological Chemistry, vol. 270, no. 7, pp. 3423–3428, 1995.
[15]  E. Romano, M. Manetti, S. Guiducci, C. Ceccarelli, Y. Allanore, and M. Matucci-Cerinic, “The genetics of systemic sclerosis: an update,” Clinical and Experimental Rheumatology, vol. 29, no. 2, pp. S75–S86, 2011.
[16]  M. D. Mayes, “The genetics of scleroderma: looking into the postgenomic era,” Current Opinion in Rheumatology, vol. 24, no. 6, pp. 677–684, 2012.
[17]  J. C. A. Broen, M. J. H. Coenen, and T. R. D. J. Radstake, “Genetics of systemic sclerosis: an update,” Current Rheumatology Reports, vol. 14, no. 1, pp. 11–21, 2012.
[18]  J. E. Martín, L. Bossini-Castillo, and J. Martín, “Unraveling the genetic component of systemic sclerosis,” Human Genetics, vol. 131, no. 7, pp. 1023–1037, 2012.
[19]  C. Chizzolini, N. C. Brembilla, E. Montanari, and M. Truchetet, “Fibrosis and immune dysregulation in systemic sclerosis,” Autoimmunity Reviews, vol. 10, no. 5, pp. 276–281, 2011.
[20]  Y. S. Gu, J. Kong, G. S. Cheema, C. L. Keen, G. Wick, and M. E. Gershwin, “The immunobiology of systemic sclerosis,” Seminars in Arthritis and Rheumatism, vol. 38, no. 2, pp. 132–160, 2008.
[21]  M. R. York, “Novel insights on the role of the innate immune system in systemic sclerosis,” Expert Review of Clinical Immunology, vol. 7, no. 4, pp. 481–489, 2011.
[22]  T. A. Wynn, “Cellular and molecular mechanisms of fibrosis,” Journal of Pathology, vol. 214, no. 2, pp. 199–210, 2008.
[23]  V. Steen, C. P. Denton, J. E. Pope, and M. Matucci-Cerinic, “Digital ulcers: overt vascular disease in systemic sclerosis,” Rheumatology, vol. 48, supplement 3, pp. iii19–iii24, 2009.
[24]  A. L. Herrick, “The pathogenesis, diagnosis and treatment of Raynaud phenomenon,” Nature Reviews Rheumatology, vol. 8, pp. 469–479, 2012.
[25]  V. D. Steen, “Scleroderma renal crisis,” Rheumatic Disease Clinics of North America, vol. 29, no. 2, pp. 315–333, 2003.
[26]  L. Mouthon, A. Bérezné, G. Bussone, L. No?l, P. M. Villiger, and L. Guillevin, “Scleroderma renal crisis: a rare but severe complication of systemic sclerosis,” Clinical Reviews in Allergy and Immunology, vol. 40, no. 2, pp. 84–91, 2011.
[27]  C. P. Denton and C. M. Black, “Pulmonary hypertension in systemic sclerosis,” Rheumatic Disease Clinics of North America, vol. 29, no. 2, pp. 335–349, 2003.
[28]  A. Ramirez and J. Varga, “Pulmonary arterial hypertension in systematic sclerosis: clinical manifestations, pathophysiology, evaluation, and management,” Treatments in Respiratory Medicine, vol. 3, no. 6, pp. 339–352, 2004.
[29]  S. Chatterjee, “Pulmonary hypertension in systemic sclerosis,” Seminars in Arthritis and Rheumatism, vol. 41, no. 1, pp. 19–37, 2011.
[30]  M. Cutolo, A. Sulli, and V. Smith, “Assessing microvascular changes in systemic sclerosis diagnosis and management,” Nature Reviews Rheumatology, vol. 6, no. 10, pp. 578–587, 2010.
[31]  W. Grassi, P. D. Medico, F. Izzo, and C. Cervini, “Microvascular involvement in systemic sclerosis: capillaroscopic findings,” Seminars in Arthritis and Rheumatism, vol. 30, no. 6, pp. 397–402, 2001.
[32]  A. A. Shah, F. M. Wigley, and L. K. Hummers, “Telangiectases in scleroderma: a potential clinical marker of pulmonary arterial hypertension,” Journal of Rheumatology, vol. 37, no. 1, pp. 98–104, 2010.
[33]  M. M. El-Omar, A. P. Jenkins, K. Hollowood, A. K. Banerjee, and R. P. H. Thompson, “Gastric telangiectasis: a rare cause of severe blood loss in CREST syndrome,” Postgraduate Medical Journal, vol. 70, no. 822, pp. 302–304, 1994.
[34]  B. Jharap, L. G. Koudstaal, E. A. Neefjes-Borst, and S. J. B. van Weyenberg, “Colonic telangiectasias in progressive systemic sclerosis,” Endoscopy, vol. 44, supplement 2, pp. E42–E43, 2012.
[35]  E. V. Lally and S. A. Jimenez, “Impotence in progressive systemic sclerosis,” Annals of Internal Medicine, vol. 95, no. 2, pp. 150–153, 1981.
[36]  S. Sukenik, J. Horowitz, D. Buskila, J. M. Abarbanel, L. Lismer, and I. Avinoach, “Impotence in systemic sclerosis,” Annals of Internal Medicine, vol. 106, no. 6, pp. 910–911, 1987.
[37]  C. Foocharoen, A. Tyndall, E. Hachulla et al., “Erectile dysfunction is frequent in systemic sclerosis and associated with severe disease: a study of the EULAR scleroderma trial and research group,” Arthritis Research and Therapy, vol. 14, no. 1, article R37, 2012.
[38]  C. T. Derk and S. A. Jimenez, “Acute myocardial infarction in systemic sclerosis patients: a case series,” Clinical Rheumatology, vol. 26, no. 6, pp. 965–968, 2007.
[39]  Y. Allanore and C. Meune, “Primary myocardial involvement in systemic sclerosis: evidence for a microvascular origin,” Clinical and Experimental Rheumatology, vol. 28, no. 5, pp. S48–S53, 2010.
[40]  M. Watson, R. J. Hally, P. A. McCue, J. Varga, and S. A. Jiménez, “Gastric antral vascular ectasia (watermelon stomach) in patients with systemic sclerosis,” Arthritis and Rheumatism, vol. 39, no. 2, pp. 341–346, 1996.
[41]  K. M. Ingraham, M. S. O'Brien, M. A. X. Shenin, C. T. Derk, and V. D. Steen, “Gastric antral vascular ectasia in systemic sclerosis: demographics and disease predictors,” Journal of Rheumatology, vol. 37, no. 3, pp. 603–607, 2010.
[42]  E. W. Hung, M. D. Mayes, R. Sharif, S. Assassi, V. I. Machicao, and C. Hosing, “Gastric antral vascular ectasia and its clinical correlates in patients with early diffuse systemic sclerosis in the SCOT trial,” Journal of Rheumatology, vol. 40, no. 4, pp. 455–460, 2013.
[43]  J. Busquets, Y. Lee, L. Santamarina et al., “Acute retinal artery occlusion in systemic sclerosis: a rare manifestation of systemic sclerosis fibroproliferative vasculopathy,” Seminars in Arthritis and Rheumatism, 2013.
[44]  M. Minasian, M. Stanford, E. Graham, C. P. Denton, and C. Black, “Bilateral ischaemic retinal vasculopathy in scleroderma,” The British Journal of Ophthalmology, vol. 89, no. 8, pp. 1064–1065, 2005.
[45]  M. H. Taylor, J. A. McFadden, M. B. Bolster, and R. M. Silver, “Ulnar artery involvement in systemic sclerosis (scleroderma),” Journal of Rheumatology, vol. 29, no. 1, pp. 102–106, 2002.
[46]  P. Youssef, H. Englert, and J. Bertouch, “Large vessel occlusive disease associated with CREST syndrome and scleroderma,” Annals of the Rheumatic Diseases, vol. 52, no. 6, pp. 464–466, 1993.
[47]  U. Müller-Ladner, O. Distler, L. Ibba-Manneschi, E. Neumann, and S. Gay, “Mechanisms of vascular damage in systemic sclerosis,” Autoimmunity, vol. 42, no. 7, pp. 587–595, 2009.
[48]  D. Abraham and O. Distler, “How does endothelial cell injury start? The role of endothelin in systemic sclerosis,” Arthritis Research and Therapy, vol. 9, supplement 2, article S2, 2007.
[49]  J. P. Pandey and E. C. LeRoy, “Human cytomegalovirus and the vasculopathies of autoimmune diseases (especially scleroderma), allograft rejection, and coronary restenosis,” Arthritis and Rheumatism, vol. 41, no. 1, pp. 10–15, 1998.
[50]  M. Neidhart, S. Kuchen, O. Distler et al., “Increased serum levels of antibodies against human cytomegalovirus and prevalence of autoantibodies in systemic sclerosis,” Arthritis and Rheumatism, vol. 42, pp. 389–392, 1999.
[51]  Y. Renaudineau, R. Revelen, Y. Levy et al., “Anti-endothelial cell antibodies in systemic sclerosis,” Clinical and Diagnostic Laboratory Immunology, vol. 6, no. 2, pp. 156–160, 1999.
[52]  F. Drenk and H. R. G. Deicher, “Pathophysiological effects of endothelial cytotoxic activity derived from sera of patients with progressive systemic sclerosis,” Journal of Rheumatology, vol. 15, no. 3, pp. 468–474, 1988.
[53]  N. Del Papa, G. Colombo, N. Fracchiolla et al., “Circulating endothelial cells as a marker of ongoing vascular disease in systemic sclerosis,” Arthritis and Rheumatism, vol. 50, no. 4, pp. 1296–1304, 2004.
[54]  J. Avouac, F. Juin, J. Wipff et al., “Circulating endothelial progenitor cells in systemic sclerosis: association with disease severity,” Annals of the Rheumatic Diseases, vol. 67, no. 10, pp. 1455–1460, 2008.
[55]  Y. Allanore, F. Batteux, J. Avouac, N. Assous, B. Weill, and A. Kahan, “Levels of circulating endothelial progenitor cells in systemic sclerosis,” Clinical and Experimental Rheumatology, vol. 25, no. 1, pp. 60–66, 2007.
[56]  A. Kuryliszyn-Moskal, P. A. Klimiuk, and S. Sierakowski, “Soluble adhesion molecules (sVCAM-1, sE-selectin), vascular endothelial growth factor (VEGF) and endothelin-1 in patients with systemic sclerosis: relationship to organ systemic involvement,” Clinical Rheumatology, vol. 24, no. 2, pp. 111–116, 2005.
[57]  G. N. Andersen, K. Caidahl, E. Kazzam et al., “Correlation between increased nitric oxide production and markers of endothelial activation in systemic sclerosis: findings with the soluble adhesion molecules E-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1,” Arthritis and Rheumatism, vol. 43, no. 5, pp. 1085–1093, 2000.
[58]  M. J. Mulligan-Kehoe and M. Simons, “Vascular disease in scleroderma: angiogenesis and vascular repair,” Rheumatic Disease Clinics of North America, vol. 34, no. 1, pp. 73–79, 2008.
[59]  M. M. Cerinic, G. Valentini, G. G. Sorano et al., “Blood coagulation, fibrinolysis, and markers of endothelial dysfunction in systemic sclerosis,” Seminars in Arthritis and Rheumatism, vol. 32, no. 5, pp. 285–295, 2003.
[60]  K. R. Stenmark, K. A. Fagan, and M. G. Frid, “Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms,” Circulation Research, vol. 99, no. 7, pp. 675–691, 2006.
[61]  C. Beyer, G. Schett, S. Gay, O. Distler, and J. H. W. Distler, “Hypoxia. Hypoxia in the pathogenesis of systemic sclerosis,” Arthritis Research & Therapy, vol. 11, no. 2, p. 220, 2009.
[62]  M. E. Anderson, T. L. Moore, S. Hollis, S. Clark, M. I. V. Jayson, and A. L. Herrick, “Endothelial-dependent vasodilatation is impaired in patients with systemic sclerosis, as assessed by low dose iontophoresis,” Clinical and Experimental Rheumatology, vol. 21, no. 3, article 403, 2003.
[63]  R. Livi, L. Teghini, S. Generini, and M. Matucci-Cerinic, “The loss of endothelium-dependent vascular tone control in systemic sclerosis,” Chest, vol. 119, no. 2, pp. 672–673, 2001.
[64]  B. Kahaleh and M. Matucci-Cerinic, “Raynaud's phenomenon and scleroderma: dysregulated neuroendothelial control of vascular tone,” Arthritis and Rheumatism, vol. 38, no. 1, pp. 1–4, 1995.
[65]  J. Cailes, S. Winter, R. M. du Bois, and T. W. Evans, “Defective endothelially mediated pulmonary vasodilation in systemic sclerosis,” Chest, vol. 114, no. 1, pp. 178–184, 1998.
[66]  A. Leask, “The role of endothelin-1 signaling in the fibrosis observed in systemic sclerosis,” Pharmacological Research, vol. 63, no. 6, pp. 502–503, 2011.
[67]  N. Giordano, P. Papakostas, G. Pecetti, and R. Nuti, “Cytokine modulation by endothelin-1 and possible therapeutic implications in systemic sclerosis,” Journal of Biological Regulators and Homeostatic Agents, vol. 25, no. 4, pp. 487–492, 2011.
[68]  K. Yamane, H. Kashiwagi, N. Suzuki et al., “Elevated plasma levels of endothelin-1 in systemic sclerosis,” Arthritis and Rheumatism, vol. 34, no. 2, pp. 243–244, 1991.
[69]  K. Yamane, T. Miyauchi, N. Suzuki et al., “Significance of plasma endothelin-1 levels in patients with systemic sclerosis,” Journal of Rheumatology, vol. 19, no. 10, pp. 1566–1571, 1992.
[70]  A. D. Cambrey, N. K. Harrison, K. E. Dawes et al., “Increased levels of endothelin-1 in bronchoalveolar lavage fluid from patients with systemic sclerosis contribute to fibroblast mitogenic activity in vitro,” The American Journal of Respiratory Cell and Molecular Biology, vol. 11, no. 4, pp. 439–445, 1994.
[71]  R. Vancheeswaran, T. Magoulas, G. Efrat et al., “Circulating endothelin-1 levels in systemic sclerosis subsets—a marker of fibrosis or vasular dysfunction?” Journal of Rheumatology, vol. 21, no. 10, pp. 1838–1844, 1994.
[72]  S. Morelli, C. Ferri, E. Polettini et al., “Plasma endothelin-1 levels, pulmonary hypertension, and lung fibrosis in patients with systemic sclerosis,” The American Journal of Medicine, vol. 99, no. 3, pp. 255–260, 1995.
[73]  S. Xu, C. P. Denton, A. Holmes, M. R. Dashwood, D. J. Abraham, and C. M. Black, “Endothelins: effect on matrix biosynthesis and proliferation in normal and scleroderma fibroblasts,” Journal of Cardiovascular Pharmacology, vol. 31, no. 1, pp. S360–S363, 1998.
[74]  X. Shi-Wen, C. P. Denton, M. R. Dashwood et al., “Fibroblast matrix gene expression and connective tissue remodeling: role of endothelin-1,” Journal of Investigative Dermatology, vol. 116, no. 3, pp. 417–425, 2001.
[75]  X. Shi-Wen, E. A. Renzoni, L. Kennedy et al., “Endogenous endothelin-1 signaling contributes to type I collagen and CCN2 overexpression in fibrotic fibroblasts,” Matrix Biology, vol. 26, no. 8, pp. 625–632, 2007.
[76]  X. Shi-wen, L. Kennedy, E. A. Renzoni et al., “Endothelin is a downstream mediator of profibrotic responses to transforming growth factor β in human lung fibroblasts,” Arthritis and Rheumatism, vol. 56, no. 12, pp. 4189–4194, 2007.
[77]  I. Chrobak, S. Lenna, L. Stawski, and M. Trojanowska, “Interferon-γ promotes vascular remodeling in human microvascular endothelial cells by upregulating endothelin (ET)-1 and transforming growth factor (TGF) β2,” Journal of Cellular Physiology, vol. 228, no. 8, pp. 1774–1783, 2013.
[78]  A. E. Koch and O. Distler, “Vasculopathy and disordered angiogenesis in selected rheumatic diseases: rheumatoid arthritis and systemic sclerosis,” Arthritis Research and Therapy, vol. 9, supplement 2, article S3, 2007.
[79]  J. H. W. Distler, S. Gay, and O. Distler, “Angiogenesis and vasculogenesis in systemic sclerosis,” Rheumatology, vol. 45, no. 3, pp. iii26–iii27, 2006.
[80]  J. Wipff, J. Avouac, D. Borderie et al., “Disturbed angiogenesis in systemic sclerosis: high levels of soluble endoglin,” Rheumatology, vol. 47, no. 7, pp. 972–975, 2008.
[81]  N. Del Papa, N. Quirici, D. Soligo et al., “Bone marrow endothelial progenitors are defective in systemic sclerosis,” Arthritis and Rheumatism, vol. 54, no. 8, pp. 2605–2615, 2006.
[82]  M. Kuwana, Y. Okazaki, H. Yasuoka, Y. Kawakami, and Y. Ikeda, “Defective vasculogenesis in systemic sclerosis,” The Lancet, vol. 364, no. 9434, pp. 603–610, 2004.
[83]  O. Distler, J. H. W. Distler, A. Scheid et al., “Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis,” Circulation Research, vol. 95, no. 1, pp. 109–116, 2004.
[84]  T. Nevskaya, S. Bykovskaia, E. Lyssuk et al., “Circulating endothelial progenitor cells in systemic sclerosis: relation to impaired angiogenesis and cardiovascular manifestations,” Clinical and Experimental Rheumatology, vol. 26, no. 3, pp. 421–429, 2008.
[85]  P. Cipriani, S. Guiducci, I. Miniati et al., “Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells: new insight into the pathogenesis of systemic sclerosis,” Arthritis and Rheumatism, vol. 56, no. 6, pp. 1994–2004, 2007.
[86]  J. N. Fleming and S. M. Schwartz, “The pathology of scleroderma vascular disease,” Rheumatic Disease Clinics of North America, vol. 34, no. 1, pp. 41–55, 2008.
[87]  F. J. de Lange, A. F. M. Moorman, R. H. Anderson et al., “Lineage and morphogenetic analysis of the cardiac valves,” Circulation Research, vol. 95, no. 6, pp. 645–654, 2004.
[88]  E. Arciniegas, C. Y. Neves, L. M. Carrillo, E. A. Zambrano, and R. Ramírez, “Endothelial-mesenchymal transition occurs during embryonic pulmonary artery development,” Endothelium, vol. 12, no. 4, pp. 193–200, 2005.
[89]  A. de Vlaming, K. Sauls, Z. Hajdu et al., “Atrioventricular valve development: new perspectives on an old theme,” Differentiation, vol. 84, no. 1, pp. 103–116, 2012.
[90]  S. Piera-Velazquez, Z. Li, and S. A. Jimenez, “Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders,” The American Journal of Pathology, vol. 179, no. 3, pp. 1074–1080, 2011.
[91]  J. He, Y. Xu, and K. Kanasaki, “Role of endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease,” Clinical and Experimental Nephrology, vol. 17, no. 4, pp. 488–497, 2013.
[92]  J. Li and J. F. Bertram, “Endothelial-myofibroblast transition, a new player in diabetic renal fibrosis,” Nephrology, vol. 15, no. 5, pp. 507–512, 2010.
[93]  F. Rieder, S. P. Kessler, G. A. West et al., “Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis,” The American Journal of Pathology, vol. 179, no. 5, pp. 2660–2673, 2011.
[94]  V. S. Lebleu, G. Taduri, J. O'Connell et al., “Origin and function of myofibroblasts in kidney fibrosis,” Nature Medicine, vol. 19, no. 8, pp. 1047–1053, 2013.
[95]  E. M. Zeisberg, S. E. Potenta, H. Sugimoto, M. Zeisberg, and R. Kalluri, “Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition,” Journal of the American Society of Nephrology, vol. 19, no. 12, pp. 2282–2287, 2008.
[96]  E. M. Zeisberg, O. Tarnavski, M. Zeisberg et al., “Endothelial-to-mesenchymal transition contributes to cardiac fibrosis,” Nature Medicine, vol. 13, no. 8, pp. 952–961, 2007.
[97]  A. Kizu, D. Medici, and R. Kalluri, “Endothelial-mesenchymal transition as a novel mechanism for generating myofibroblasts during diabetic nephropathy,” The American Journal of Pathology, vol. 175, no. 4, pp. 1371–1373, 2009.
[98]  S. Speca, I. Giusti, F. Rieder, and G. Latella, “Cellular and molecular mechanisms of intestinal fibrosis,” World Journal of Gastroenterology, vol. 18, no. 28, pp. 3635–3661, 2012.
[99]  Y. Sato and Y. Nakanuma, “Role of endothelial-mesenchymal transition in idiopathic portal hypertension,” Histology and Histopathology, vol. 28, pp. 145–154, 2013.
[100]  E. Arciniegas, M. G. Frid, I. S. Douglas, and K. R. Stenmark, “Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension,” The American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 293, no. 1, pp. L1–L8, 2007.
[101]  S. Piera-Velazquez and S. A. Jimenez, “Molecular mechanisms of endothelial to mesenchymal cell transition (EndoMT) in experimentally induced fibrotic diseases,” Fibrogenesis and Tissue Repair, vol. 5, supplement 1, article S7, 2012.
[102]  M. Goumans, Z. Liu, and P. T. Dijke, “TGF-β signaling in vascular biology and dysfunction,” Cell Research, vol. 19, no. 1, pp. 116–127, 2009.
[103]  D. Medici, S. Potenta, and R. Kalluri, “Transforming growth factor-β2 promotes Snail-mediated endothelial—mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling,” Biochemical Journal, vol. 437, no. 3, pp. 515–520, 2011.
[104]  L. A. van Meeteren and P. T. Dijke, “Regulation of endothelial cell plasticity by TGF-β,” Cell and Tissue Research, vol. 347, no. 1, pp. 177–186, 2012.
[105]  M. B. Sporn, A. B. Roberts, L. M. Wakefield, and R. K. Assoian, “Transforming growth factor factor-β: biological function and chemical structure,” Science, vol. 233, no. 4763, pp. 532–534, 1986.
[106]  A. B. Roberts, K. C. Flanders, U. I. Heine et al., “Transforming growth factor-beta: multifunctional regulator of differentiation and development,” Philosophical transactions of the Royal Society of London B, vol. 327, no. 1239, pp. 145–154, 1990.
[107]  G. C. Blobe, W. P. Schiemann, and H. F. Lodish, “Role of transforming growth factor β in human disease,” The New England Journal of Medicine, vol. 342, no. 18, pp. 1350–1358, 2000.
[108]  W. A. Border and N. A. Noble, “Transforming growth factor β in tissue fibrosis,” The New England Journal of Medicine, vol. 331, no. 19, pp. 1286–1292, 1994.
[109]  R. A. Ignotz and J. Massagué, “Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix,” The Journal of Biological Chemistry, vol. 261, no. 9, pp. 4337–4345, 1986.
[110]  J. Varga and S. A. Jimenez, “Stimulation of normal human fibroblast collagen production and processing by transforming growth factor,” Biochemical and Biophysical Research Communications, vol. 138, no. 2, pp. 974–980, 1986.
[111]  J. Varga, J. Rosenbloom, and S. A. Jimenez, “Transforming growth factor β (TGFβ) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts,” Biochemical Journal, vol. 247, no. 3, pp. 597–604, 1987.
[112]  A. B. Roberts, U. I. Heine, K. C. Flanders, and M. B. Sporn, “Transforming growth factor-β. Major role in regulation of extracellular matrix,” Annals of the New York Academy of Sciences, vol. 580, pp. 225–232, 1990.
[113]  R. J. McAnulty, J. S. Campa, A. D. Cambrey, and G. J. Laurent, “The effect of transforming growth factor β on rates of procollagen synthesis and degradation in vitro,” Biochimica et Biophysica Acta, vol. 1091, no. 2, pp. 231–235, 1991.
[114]  D. R. Edwards, G. Murphy, J. J. Reynolds et al., “Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor,” EMBO Journal, vol. 6, no. 7, pp. 1899–1904, 1987.
[115]  H. Ihn, “Autocrine TGF-β signaling in the pathogenesis of systemic sclerosis,” Journal of Dermatological Science, vol. 49, no. 2, pp. 103–113, 2008.
[116]  Z. Li and S. A. Jimenez, “Protein kinase Cδ and c-Abl kinase are required for transforming growth factor β induction of endothelial-mesenchymal transition in vitro,” Arthritis and Rheumatism, vol. 63, no. 8, pp. 2473–2483, 2011.
[117]  Y. Yoshimatsu and T. Watabe, “Roles of TGF-β signals in endothelial-mesenchymal transition during cardiac fibrosis,” International Journal of Inflammation, vol. 2011, Article ID 724080, 8 pages, 2011.
[118]  F. Lin, N. Wang, and T. C. Zhang, “The role of endothelial-mesenchymal transition in development and pathological process,” IUBMB Life, vol. 64, no. 9, pp. 717–723, 2012.
[119]  J. Garcia, M. J. Sandi, P. Cordelier et al., “Tie1 deficiency induces endothelial-mesenchymal transition,” EMBO Reports, vol. 13, no. 5, pp. 431–439, 2012.
[120]  A. K. Ghosh, V. Nagpal, J. W. Covington, M. A. Michaels, and D. E. Vaughan, “Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT,” Cellular Signalling, vol. 24, no. 5, pp. 1031–1036, 2012.
[121]  H. Mihira, H. I. Suzuki, Y. Akatsu et al., “TGF-β-induced mesenchymal transition of MS-1 endothelial cells requires Smad-dependent cooperative activation of Rho signals and MRTF-A,” Journal of Biochemistry, vol. 151, no. 2, pp. 145–156, 2012.
[122]  M. Reis and S. Liebner, “Wnt signaling in the vasculature,” Experimental Cell Research, vol. 319, no. 9, pp. 1317–1323, 2013.
[123]  C. Niehrs, “The complex world of WNT receptor signalling,” Nature Reviews Molecular Cell Biology, vol. 13, pp. 767–779, 2012.
[124]  H. Clevers and R. Nusse, “Wnt/β-catenin signaling and disease,” Cell, vol. 149, no. 6, pp. 1192–1205, 2012.
[125]  P. Herr, G. Hausmann, and K. Basler, “WNT secretion and signalling in human disease,” Trends in Molecular Medicine, vol. 18, no. 8, pp. 483–493, 2012.
[126]  R. Lafyatis, “Connective tissue disease: SSc-fibrosis takes flight with Wingless inhibition,” Nature Reviews Rheumatology, vol. 8, pp. 441–442, 2012.
[127]  C. Beyer, A. Schramm, A. Akhmetshina et al., “β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis,” Annals of the Rheumatic Diseases, vol. 71, no. 5, pp. 761–767, 2012.
[128]  J. Wei, F. Fang, A. P. Lam et al., “Wnt/β-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells,” Arthritis and Rheumatism, vol. 64, no. 8, pp. 2734–2745, 2012.
[129]  A. P. Lam, A. S. Flozak, S. Russell et al., “Nuclear β-catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation,” The American Journal of Respiratory Cell and Molecular Biology, vol. 45, no. 5, pp. 915–922, 2011.
[130]  L. Attisano and E. Labbé, “TGFβ and Wnt pathway cross-talk,” Cancer and Metastasis Reviews, vol. 23, no. 1-2, pp. 53–61, 2004.
[131]  P. Minoo and C. Li, “Cross-talk between transforming growth factor-β and Wingless/Int pathways in lung development and disease,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 6, pp. 809–812, 2010.
[132]  P. Zhang, Y. Cai, A. Soofi, and G. R. Dressler, “Activation of Wnt11 by transforming growth factor-β drives mesenchymal gene expression through non-canonical Wnt protein signaling in renal epithelial cells,” The Journal of Biological Chemistry, vol. 287, no. 25, pp. 21290–21302, 2012.
[133]  A. Akhmetshina, K. Palumbo, C. Dees et al., “Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis,” Nature Communications, vol. 3, article 734, 2012.
[134]  R. Kalluri and E. G. Neilson, “Epithelial-mesenchymal transition and its implications for fibrosis,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1776–1784, 2003.
[135]  M. A. Nieto, “The ins and outs of the epithelial to mesenchymal transition in health and disease,” Annual Review of Cell and Developmental Biology, vol. 27, pp. 347–376, 2011.
[136]  J. P. Thiery, H. Acloque, R. Y. J. Huang, and M. A. Nieto, “Epithelial-mesenchymal transitions in development and disease,” Cell, vol. 139, no. 5, pp. 871–890, 2009.
[137]  K. Lee and C. M. Nelson, “New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis,” International Review of Cell and Molecular Biology, vol. 294, pp. 171–221, 2012.
[138]  S. L. Cheng, J. S. Shao, A. Behrmann, K. Krchma, and D. A. Towler, “Dkk1 and MSX2-wnt7b signaling reciprocally regulate the endothelial-mesenchymal transition in aortic endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, pp. 1679–1689, 2013.
[139]  S. J. Bray, “Notch signalling: a simple pathway becomes complex,” Nature Reviews Molecular Cell Biology, vol. 7, no. 9, pp. 678–689, 2006.
[140]  R. Kopan and M. X. G. Ilagan, “The canonical notch signaling pathway: unfolding the activation mechanism,” Cell, vol. 137, no. 2, pp. 216–233, 2009.
[141]  A. Louvi and S. Artavanis-Tsakonas, “Notch and disease: a growing field,” Seminars in Cell and Developmental Biology, vol. 23, no. 4, pp. 473–480, 2012.
[142]  A. L. Penton, L. D. Leonard, and N. B. Spinner, “Notch signaling in human development and disease,” Seminars in Cell and Developmental Biology, vol. 23, no. 4, pp. 450–457, 2012.
[143]  R. A. Benson, J. A. Lowrey, J. R. Lamb, and S. E. M. Howie, “The Notch and Sonic hedgehog signalling pathways in immunity,” Molecular Immunology, vol. 41, no. 6-7, pp. 715–725, 2004.
[144]  F. Radtke, A. Wilson, S. J. C. Mancini, and H. R. MacDonald, “Notch regulation of lymphocyte development and function,” Nature Immunology, vol. 5, no. 3, pp. 247–253, 2004.
[145]  L. E. Laitman and S. Dahan, “Taking inflammatory bowel disease up a Notch,” Immunologic Research, vol. 54, no. 1–3, pp. 69–74, 2012.
[146]  R. Bonegio and K. Susztak, “Notch signaling in diabetic nephropathy,” Experimental Cell Research, vol. 318, no. 9, pp. 986–992, 2012.
[147]  N. Sethi and Y. Kang, “Notch signalling in cancer progression and bone metastasis,” The British Journal of Cancer, vol. 105, no. 12, pp. 1805–1810, 2011.
[148]  M. Noseda, G. McLean, K. Niessen et al., “Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation,” Circulation Research, vol. 94, no. 7, pp. 910–917, 2004.
[149]  M. Noseda, Y. Fu, K. Niessen et al., “Smooth muscle α-actin is a direct target of Notch/CSL,” Circulation Research, vol. 98, no. 12, pp. 1468–1470, 2006.
[150]  K. Niessen, Y. Fu, L. Chang, P. A. Hoodless, D. McFadden, and A. Karsan, “Slug is a direct Notch target required for initiation of cardiac cushion cellularization,” Journal of Cell Biology, vol. 182, no. 2, pp. 315–325, 2008.
[151]  Y. X. Fu, A. Chang, L. Chang et al., “Differential regulation of transforming growth factor β signaling pathways by Notch in human endothelial cells,” The Journal of Biological Chemistry, vol. 284, no. 29, pp. 19452–19462, 2009.
[152]  Y. Fu, A. C. Y. Chang, M. Fournier, L. Chang, K. Niessen, and A. Karsan, “RUNX3 maintains the mesenchymal phenotype after termination of the notch signal,” The Journal of Biological Chemistry, vol. 286, no. 13, pp. 11803–11813, 2011.
[153]  A. C. Y. Chang, Y. Fu, V. C. Garside et al., “Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase,” Developmental Cell, vol. 21, no. 2, pp. 288–300, 2011.
[154]  V. C. Garside, A. C. Chang, A. Karsan, and P. A. Hoodless, “Co-ordinating Notch, BMP, and TGF-β signaling during heart valve development,” Cellular and Molecular Life Sciences, vol. 70, no. 16, pp. 2899–2917, 2013.
[155]  C. Beyer and J. H. Distler, “Morphogen pathways in systemic sclerosis,” Current Rheumatology Reports, vol. 15, no. 1, article 299, 2013.
[156]  C. Beyer, C. Dees, and J. H. Distler, “Morphogen pathways as molecular targets for the treatment of fibrosis in systemic sclerosis,” Archives of Dermatological Research, vol. 305, no. 1, pp. 1–8, 2013.
[157]  G. M. Di Guglielmo, C. Le Roy, A. F. Goodfellow, and J. L. Wrana, “Distinct endocytic pathways regulate TGF-β receptor signalling and turnover,” Nature Cell Biology, vol. 5, no. 5, pp. 410–421, 2003.
[158]  S. Hayes, A. Chawla, and S. Corvera, “TGFβ receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2,” Journal of Cell Biology, vol. 158, no. 7, pp. 1239–1249, 2002.
[159]  C. E. Runyan, H. W. Schnaper, and A. Poncelet, “The role of internalization in transforming growth factor β1-induced Smad2 association with Smad anchor for receptor activation (SARA) and Smad2-dependent signaling in human mesangial cells,” The Journal of Biological Chemistry, vol. 280, no. 9, pp. 8300–8308, 2005.
[160]  F. Del Galdo, M. R. Lisanti, and S. A. Jimenez, “Caveolin-1, transforming growth factor-β receptor internalization, and the pathogenesis of systemic sclerosis,” Current Opinion in Rheumatology, vol. 20, no. 6, pp. 713–719, 2008.
[161]  F. Del Galdo, F. Sotgia, C. J. De Almeida et al., “Decreased expression of caveolin 1 in patients with systemic sclerosis: crucial role in the pathogenesis of tissue fibrosis,” Arthritis and Rheumatism, vol. 58, no. 9, pp. 2854–2865, 2008.
[162]  E. Tourkina, M. Richard, P. G??z et al., “Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo,” The American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 294, no. 5, pp. L843–L861, 2008.
[163]  O. Le Saux, K. Teeters, S. Miyasato et al., “The role of caveolin-1 in pulmonary matrix remodeling and mechanical properties,” The American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 295, no. 6, pp. L1007–L1017, 2008.
[164]  E. Tourkina, M. Bonner, J. Oates et al., “Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide,” Fibrogenesis and Tissue Repair, vol. 4, no. 1, article 15, 2011.
[165]  Z. Li, P. J. Wermuth, B. S. Benn, M. P. Lisanti, and S. A. Jimenez, “Caveolin-1 deficiency induces spontaneous endothelial-to-mesenchymal transition in murine pulmonary endothelial cells in vitro,” The American Journal of Pathology, vol. 182, no. 2, pp. 325–331, 2013.
[166]  S. A. Jiménez, S. V. Castro, and S. Piera-Velázquez, “Role of growth factors in the pathogenesis of tissue fibrosis in systemic sclerosis,” Current Rheumatology Reviews, vol. 6, no. 4, pp. 283–294, 2010.
[167]  M. Trojanowska, “Role of PDGF in fibrotic diseases and systemic sclerosis,” Rheumatology, vol. 47, supplement, pp. v2–v4, 2008.
[168]  M. Bielecki, K. Kowal, A. Lapinska, S. Chwiesko-Minarowska, L. Chyczewski, and O. Kowal-Bielecka, “Peripheral blood mononuclear cells from patients with systemic sclerosis spontaneously secrete increased amounts of vascular endothelial growth factor (VEGF) already in the early stage of the disease,” Advances in Medical Sciences, vol. 56, no. 2, pp. 255–263, 2011.
[169]  P. M. Krein and B. W. Winston, “Roles for insulin-like growth factor I and transforming growth factor-β in fibrotic lung disease,” Chest, vol. 122, no. 6, supplement, pp. 289S–293S, 2002.
[170]  B. Widyantoro, N. Emoto, K. Nakayama et al., “Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition,” Circulation, vol. 121, no. 22, pp. 2407–2418, 2010.
[171]  G. R. Grotendorst, “Connective tissue growth factor: a mediator of TGf-β action on fibroblasts,” Cytokine and Growth Factor Reviews, vol. 8, no. 3, pp. 171–179, 1997.
[172]  A. Leask and D. J. Abraham, “The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology,” Biochemistry and Cell Biology, vol. 81, no. 6, pp. 355–363, 2003.
[173]  A. Leask and D. J. Abraham, “All in the CCN family: essential matricellular signaling modulators emerge from the bunker,” Journal of Cell Science, vol. 119, no. 23, pp. 4803–4810, 2006.
[174]  X. Shi-Wen, A. Leask, and D. Abraham, “Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis,” Cytokine and Growth Factor Reviews, vol. 19, no. 2, pp. 133–144, 2008.
[175]  A. Leask, C. P. Denton, and D. J. Abraham, “Insights into the molecular mechanism of chronic fibrosis: the role of connective tissue growth factor in scleroderma,” Journal of Investigative Dermatology, vol. 122, no. 1, pp. 1–6, 2004.
[176]  C. P. Denton and D. J. Abraham, “Transforming growth factor-β and connective tissue growth factor: key cytokines in scleroderma pathogenesis,” Current Opinion in Rheumatology, vol. 13, no. 6, pp. 505–511, 2001.
[177]  A. Igarashi, K. Nashiro, K. Kikuchi et al., “Significant correlation between connective tissue growth factor gene expression and skin sclerosis in tissue sections from patients with systemic sclerosis,” Journal of Investigative Dermatology, vol. 105, no. 2, pp. 280–284, 1995.
[178]  S. Serratì, A. Chillà, A. Laurenzana et al., “Systemic sclerosis endothelial cells recruit and activate dermal fibroblasts by induction of a connective tissue growth factor (CCN2)/transforming growth factor β-dependent mesenchymal-to-mesenchymal transition,” Arthritis and Rheumatism, vol. 65, no. 1, pp. 258–269, 2013.
[179]  S. W. Lee, J. Y. Won, W. J. Kim et al., “Snail as a potential target molecule in cardiac fibrosis: paracrine action of endothelial cells on fibroblasts through Snail and CTGF axis,” Molecular Therapy, 2013.
[180]  D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004.
[181]  X. Liu, K. Fortin, and Z. Mourelatos, “MicroRNAs: biogenesis and molecular functions,” Brain Pathology, vol. 18, no. 1, pp. 113–121, 2008.
[182]  T. Treiber, N. Treiber, and G. Meister, “Regulation of microRNA biogenesis and function,” Thrombosis and Haemostasis, vol. 107, no. 4, pp. 605–610, 2012.
[183]  I. G. Cannell, Y. W. Kong, and M. Bushell, “How do microRNAs regulate gene expression?” Biochemical Society Transactions, vol. 36, no. 6, pp. 1224–1231, 2008.
[184]  A. Eulalio, E. Huntzinger, and E. Izaurralde, “Getting to the root of miRNA-mediated gene silencing,” Cell, vol. 132, no. 1, pp. 9–14, 2008.
[185]  M. R. Fabian, N. Sonenberg, and W. Filipowicz, “Regulation of mRNA translation and stability by microRNAs,” Annual Review of Biochemistry, vol. 79, pp. 351–379, 2010.
[186]  M. V. Iorio and C. M. Croce, “MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review,” EMBO Molecular Medicine, vol. 4, no. 3, pp. 143–159, 2012.
[187]  X. Jiang, E. Tsitsiou, S. E. Herrick, and M. A. Lindsay, “MicroRNAs and the regulation of fibrosis,” FEBS Journal, vol. 277, no. 9, pp. 2015–2021, 2010.
[188]  S. Vettori, S. Gay, and O. Distler, “Role of MicroRNAs in fibrosis,” Open Rheumatology Journal, vol. 6, pp. 130–139, 2012.
[189]  V. Patel and L. Noureddine, “MicroRNAs and fibrosis,” Current Opinion in Nephrology and Hypertension, vol. 21, no. 4, pp. 410–416, 2012.
[190]  T. Bowen, R. H. Jenkins, and D. J. Fraser, “MicroRNAs, transforming growth factor β-1, and tissue fibrosis,” Journal of Pathology, vol. 229, no. 2, pp. 274–285, 2013.
[191]  B. Maurer, J. Stanczyk, A. Jüngel et al., “MicroRNA-29, a key regulator of collagen expression in systemic sclerosis,” Arthritis and Rheumatism, vol. 62, no. 6, pp. 1733–1743, 2010.
[192]  H. Zhu, Y. Li, S. Qu et al., “MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma,” Journal of Clinical Immunology, vol. 32, no. 3, pp. 514–522, 2012.
[193]  N. Honda, M. Jinnin, I. Kajihara et al., “TGF-β-mediated downregulation of microRNA-196a contributes to the constitutive upregulated type I collagen expression in scleroderma dermal fibroblasts,” Journal of Immunology, vol. 188, no. 7, pp. 3323–3331, 2012.
[194]  T. Sing, M. Jinnin, K. Yamane et al., “microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma,” Rheumatology, vol. 51, no. 9, pp. 1550–1556, 2012.
[195]  W. J. Peng, J. H. Tao, B. Mei et al., “MicroRNA-29: a potential therapeutic target for systemic sclerosis,” Expert Opinion on Therapeutic Targets, vol. 16, no. 9, pp. 875–879, 2012.
[196]  N. Honda, M. Jinnin, T. Kira-Etoh et al., “miR-150 down-regulation contributes to the constitutive type I collagen overexpression in scleroderma dermal fibroblasts via the induction of integrin β3,” The American Journal of Pathology, vol. 182, no. 1, pp. 206–216, 2013.
[197]  K. Makino, M. Jinnin, J. Aoi et al., “Discoidin domain receptor 2-microRNA 196a-mediated negative feedback against excess type I collagen expression is impaired in scleroderma dermal fibroblasts,” Journal of Investigative Dermatology, vol. 133, pp. 110–119, 2013.
[198]  J. Martin, R. H. Jenkins, R. Bennagi et al., “Post-transcriptional regulation of transforming growth factor β-1 by microRNA-744,” PLoS ONE, vol. 6, no. 10, Article ID e25044, 2011.
[199]  J. P. Hong, X. M. Li, M. X. Li, and F. L. Zheng, “VEGF suppresses epithelial-mesenchymal transition by inhibiting the expression of Smad3 and miR-192, a Smad3-dependent microRNA,” International Journal of Molecular Medicine, vol. 31, no. 6, pp. 1436–1442, 2013.
[200]  R. Kumarswamy, I. Volkmann, V. Jazbutyte, S. Dangwal, D. Park, and T. Thum, “Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by MicroRNA-21,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 2, pp. 361–369, 2012.
[201]  B. Hu and S. H. Phan, “Myofibroblasts,” Current Opinion in Rheumatology, vol. 25, no. 1, pp. 71–77, 2013.
[202]  B. Hinz, S. H. Phan, V. J. Thannickal et al., “Recent developments in myofibroblast biology: paradigms for connective tissue remodeling,” The American Journal of Pathology, vol. 180, no. 4, pp. 1340–1355, 2012.
[203]  M. A. Watsky, K. T. Weber, Y. Sun, and A. Postlethwaite, “New insights into the mechanism of fibroblast to myofibroblast transformation and associated pathologies,” International Review of Cell and Molecular Biology, vol. 282, pp. 165–192, 2010.
[204]  A. J. Gilbane, C. P. Denton, and A. M. Holmes, “Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells,” Arthritis Research and Therapy, vol. 15, no. 3, article 215, 2013.
[205]  J. Wei, S. Bhattacharyya, W. G. Tourtellotte, and J. Varga, “Fibrosis in systemic sclerosis: emerging concepts and implications for targeted therapy,” Autoimmunity Reviews, vol. 10, no. 5, pp. 267–275, 2011.
[206]  A. Leask, “Towards an anti-fibrotic therapy for scleroderma: targeting myofibroblast differentiation and recruitment,” Fibrogenesis and Tissue Repair, vol. 3, no. 1, article 8, 2010.
[207]  A. E. Postlethwaite, H. Shigemitsu, and S. Kanangat, “Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic sclerosis,” Current Opinion in Rheumatology, vol. 16, no. 6, pp. 733–738, 2004.
[208]  M. Manetti, S. Guiducci, and M. Matucci-Cerinic, “The origin of the myofibroblast in fibroproliferative vasculopathy: does the endothelial cell steer the pathophysiology of systemic sclerosis?” Arthritis and Rheumatism, vol. 63, no. 8, pp. 2164–2167, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133