Saraca asoca has been traditionally used in Indian system for treatment of uterine, genital, and other reproductive disorders in women, fever, pain, and inflammation. The hypothesis of this study is that acetone extract of Saraca asoca seeds is an effective anti-inflammatory treatment for arthritis in animal experiments. The antiarthritic effect of its oral administration on Freund’s adjuvant-induced arthritis has been studied in Wistar albino rats after acute and subacute toxicities. Phytochemical analysis revealed presence of high concentrations of phenolic compounds such as flavonoids and tannins, while no mortality or morbidity was observed up to 1000?mg/kg dose during acute and subacute toxicity assessments. Regular treatment up to 21 days of adjuvant-induced arthritic rats with Saraca asoca acetone extract (at 300 and 500?mg/kg doses) increases RBC and Hb, decreases WBC, ESR, and prostaglandin levels in blood, and restores body weight when compared with control (normal saline) and standard (Indomethacin) groups. Significant ( ) inhibitory effect was observed especially at higher dose on paw edema, ankle joint inflammation, and hydroxyproline and glucosamine concentrations in urine. Normal radiological images of joint and histopathological analysis of joint, liver, stomach, and kidney also confirmed its significant nontoxic, antiarthritic, and anti-inflammatory effect. 1. Introduction Arthritis affects around 0.5–1% of the world population with more women being affected than men. The immune system is a well-organized and well-regulated structure. The deregulation of the immune system may lead to the development of autoimmune diseases such as Rheumatoid arthritis (RA) which is a prototype of the groups of illnesses with chronic systemic disorders with destructive inflammatory polyarticular joint potentially resulting in progressive destruction of articular and periarticular structure. Persistent inflammation produces swollen joints with severe synovitis, decreased nociceptive threshold, and massive subsynovial infiltration of mononuclear cells, which along with angiogenesis leads to pannus formation. Expansion of the pannus induces bone erosion and cartilage thinning, leading to the loss of joint function in due course. This results in a high degree of morbidity and disturbed daily life of the patient. Corticosteroids have not been able to fully control the incidence because of its limitations and risk of side effects. Many patients and practitioners are seeking alternative approach to provide an effective cure in the treatment of arthritis and to
References
[1]
S. Sannigrahi, U. K. Mazumder, D. Pal, S. L. Mishra, and S. Maity, “Flavonoids of Enhydra fluctuans exhibits analgesic and anti-inflammatory activity in different animal models,” Pakistan Journal of Pharmaceutical Sciences, vol. 24, no. 3, pp. 369–375, 2011.
[2]
P. V. Sharma, Dravyaguna Vijnana, Chaukhamba Bharati Academy, Varanasi, India, 1995.
[3]
P. C. Sharma, M. B. Yelne, and T. J. Dennis, Database on Medicinal Plants Used in Ayurveda, Central Council for Research in Ayurveda and Siddha, Department of ISM&H, Ministry of Health and Family Welfare, New Delhi, India, 2005.
[4]
P. Pradhan, L. Joseph, V. Gupta et al., “Saraca asoca (Ashoka): a review,” Journal of Chemical and Pharmaceutical Research, vol. 1, no. 1, pp. 62–71, 2009.
[5]
A. Chaterjee and S. C. Pakrashi, The Treatise on Indian Medicinal Plants, National Institute of Science Communication and Information Resources, CSIR, New Delhi, India, 2006.
[6]
S. Ghosh, M. Majumder, S. Majumder, N. K. Ganguly, and B. P. Chatterjee, “Saracin: a lectin from Saraca indica seed integument induces apoptosis in human T-lymphocytes,” Archives of Biochemistry and Biophysics, vol. 371, no. 2, pp. 163–168, 1999.
[7]
I. Lampronti, M. T. H. Khan, M. Borgatti, N. Bianchi, and R. Gambari, “Inhibitory effects of Bangladeshi medicinal plant extracts on interactions between transcription factors and target DNA sequences,” Evidence-based Complementary and Alternative Medicine, vol. 5, no. 3, pp. 303–312, 2008.
[8]
S. Sasmal, S. Majumdar, M. Gupta, A. Mukherjee, and P. K. Mukherjee, “Pharmacognostical, phytochemical and pharmacological evaluation for the antipyretic effect of the seeds of Saraca asoca Roxb,” Asian Pacific Journal of Tropical Biomedicine, vol. 2, no. 10, pp. 782–786, 2012.
[9]
W. C. Evans, Trease and Evans Pharmacognosy, Saunders Elsevier, London, UK, 16th edition, 2009.
[10]
C. K. Kokate, Practical Pharmacognosy, Vallabh Prakashan, New Delhi, India, 3rd edition, 1994.
[11]
C. Anesini, G. E. Ferraro, and R. Filip, “Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina,” Journal of Agricultural and Food Chemistry, vol. 56, no. 19, pp. 9225–9229, 2008.
[12]
Ministry of Health and Family Welfare, Ayurvedic Pharmacopoeia of India, part 1, Government of India, Ministry of Health and Family Welfare, Department of Indian System of Medicine & Homoeopathy, New Delhi, India, 1st edition, 2001.
[13]
M. N. Ghosh, Fundamentals of Experimental Pharmacology, Hilton and Company, Kolkata, India, 4th edition, 2008.
[14]
Acute Oral Toxicity—Acute Toxic Class Method, OECD Guideline 423 for Testing of Chemicals, OECD, Paris, France, 2001.
[15]
A. Veerappan, S. Miyazaki, M. Kadarkaraisamy, and D. Ranganathan, “Acute and subacute toxicity studies of Aegle marmelos Corr., an Indian medicinal plant,” Phytomedicine, vol. 14, no. 2-3, pp. 209–215, 2007.
[16]
M. V. K. Patil, A. D. Kandhare, and S. D. Bhise, “Anti-arthritic and anti-inflammatory activity of Xanthium srtumarium L. ethanolic extract in Freund's complete adjuvant induced arthritis,” Biomedicine and Aging Pathology, vol. 2, no. 1, pp. 6–15, 2012.
[17]
A. K. Chakraborty and H. K. Roy, “Evaluation of anti-arthritic activity of ethanolic extract of Cleome rutidosperma,” Journal of Pharmaceutical Science and Technology, vol. 2, no. 10, pp. 330–332, 2010.
[18]
H. R. Chitme and N. P. Patel, “Antiarthritis activity of aristolochia bracteata extract in experimental animals,” The Open Natural Products Journal, vol. 2, pp. 6–15, 2009.
[19]
M. de Castro Costa, P. de Sutter, J. Gybels, and J. van Hees, “Adjuvant-induced arthritis in rats: a possible animal model of chronic pain,” Pain, vol. 10, no. 2, pp. 173–185, 1981.
[20]
P. Patel, D. Patel, and N. Patel, “Experimental investigation of anti-rheumatoid activity of Pleurotus sajorcaju in adjuvant-induced arthritic rats,” Chinese Journal of Natural Medicines, vol. 10, no. 4, pp. 269–274, 2012.
[21]
R. S. Sainath, J. Prathiba, and R. Malathi, “Antimicrobial properties of the stem bark of Saraca indica (Caesalpiniaceae),” European Review for Medical and Pharmacological Sciences, vol. 13, no. 5, pp. 371–374, 2009.
[22]
D. Kilimozhi, V. Parthasarathy, and N. Amuthavalli, “Effect of Clerodendrum phlomidis on adjuvant induced arthritis in rats—a radiographic densitometric analysis,” International Journal of PharmTech Research, vol. 1, no. 4, pp. 1434–1441, 2009.
[23]
H. G. Vogel, W. H. Vogel, B. A. Sholkens, J. Sandow, G. Muller, and W. F. Vogel, Drug Discovery and Evaluation, Springer, New York, NY, USA, 2nd edition, 2002.