Objective. To analyse the potential risk factors of nosocomial infections in patients with active rheumatoid arthritis (RA). Methods. A total of 2452 active RA patients at Hospitals in Shanghai between January 2009 and February 2011 were analyzed. Their demographic and clinical characteristics were compared with those without infection, and the potential risk factors were determined by logistic regression analysis. Results. Multivariate analysis indicated the gender ( O R = 0 . 7 0 , 95% CI 0.53–0.92), duration in hospital ( O R = 1 . 0 3 , 95%CI 1.01–1.05), number of organs involved ( O R = 0 . 8 2 , 95%CI 0.72–0.92), number of disease-modifying antirheumatic drugs ((DMARDs) ( O R = 1 . 2 2 , 95%CI 1.061–1.40)), corticosteroid therapy ( O R = 1 . 0 2 , 95%CI 1.01–1.03), peripheral white blood cell counts ((WBC) ( O R = 1 . 0 4 , 95%CI 1.00–1.08)), levels of serum albumin ( O R = 0 . 9 8 , 95%CI 0.97–0.99), and C-reactive protein ((CRP) ( O R = 1 . 0 3 , 95%CI 1.01–1.04)) that were significantly associated with the risk of infections. Conclusion. The female patients, longer hospital stay, more organs involved, more DMARDs, corticosteroid usage, high counts of WBC, lower serum albumin, and higher serum CRP were independent risk factors of infections in active RA patients. 1. Introduction RA is a chronic inflammatory autoimmune disease with unknown etiology and has an increased risk of infection compared with the general population [1]. Previous studies have shown that microbial infection, particularly for genitourinary and bronchopulmonary infection, contributes to increased rate of mortality in RA patients [2, 3]. It has been a serious concern that RA patients acquire microbial infection during hospitalization. Notably, about 5–10% of RA patients may acquire a microbial infection after their admission, and the hospital-related infection rate in RA patients has been increasing in the USA and other countries during the past decades [4]. Those patients acquire infection with the common hospital-related drug-resistant pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), antibiotic-resistant Gram-negative bacilli and, more recently, vancomycin-resistant enterococci [5]. More importantly, these nosocomial infections are difficult to control, leading to a high mortality, particularly in individuals with immunodisorder. Therefore, understanding potential risk factors associated with the high susceptibility will be of great significance in the prevention and control of nosocomial infection. RA patients have unbalanced immunoregulation and
References
[1]
S. Bernatsky, M. Hudson, and S. Suissa, “Anti-rheumatic drug use and risk of serious infections in rheumatoid arthritis,” Rheumatology, vol. 46, no. 7, pp. 1157–1160, 2007.
[2]
T. A. Simon, J. Askling, D. Lacaille et al., “Infections requiring hospitalization in the abatacept clinical development program: an epidemiological assessment,” Arthritis Research & Therapy, vol. 12, no. 2, article R67, 2010.
[3]
A. L. Smitten, H. K. Choi, M. C. Hochberg et al., “The risk of hospitalized infection in patients with rheumatoid arthritis,” Journal of Rheumatology, vol. 35, no. 3, pp. 387–393, 2008.
[4]
D. M. Hacek, T. Suriano, G. A. Noskin, J. Kruszynski, B. Reisberg, and L. R. Peterson, “Medical and economic benefit of a comprehensive infection control program that includes routine determination of microbial clonality,” American Journal of Clinical Pathology, vol. 111, no. 5, pp. 647–654, 1999.
[5]
D. W. Spelman, “Hospital-acquired infections,” Medical Journal of Australia, vol. 176, no. 6, pp. 286–291, 2002.
[6]
F. C. Arnett, S. M. Edworthy, D. A. Bloch et al., “The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis,” Arthritis and Rheumatism, vol. 31, no. 3, pp. 315–324, 1988.
[7]
M. L. L. Prevoo, M. A. van 't Hof, H. H. Kuper, M. A. van Leeuwen, L. B. A. van de Putte, and P. L. C. M. van Riel, “Modified disease activity scores that include twenty-eight-joint counts: development and validation in a prospective longitudinal study of patients with rheumatoid arthritis,” Arthritis and Rheumatism, vol. 38, no. 1, pp. 44–48, 1995.
[8]
J. S. Garner, W. R. Jarvis, T. G. Emori, T. C. Horan, and J. M. Hughes, “CDC definitions for nosocomial infections,” in APIC Infection Control and Applied Epidemiology: Principles and Practice, R. N. Olmsted, Ed., pp. A-1–A-20, Mosby, St. Louis, Mo, USA, 1996.
[9]
A. von Graevenitz, “The role of opportunistic bacteria in human disease,” Annual Review of Microbiology, vol. 31, pp. 447–471, 1977.
[10]
M. F. Doran, C. S. Crowson, G. R. Pond, W. M. O'Fallon, and S. E. Gabriel, “Frequency of infection in patients with rheumatoid arthritis compared with controls: a population-based study,” Arthritis and Rheumatism, vol. 46, no. 9, pp. 2287–2293, 2002.
[11]
J. J. Goronzy and C. M. Weyand, “Rheumatoid arthritis,” Immunological Reviews, vol. 204, pp. 55–73, 2005.
[12]
J. R. Curtis, N. Patkar, A. Xie et al., “Risk of serious bacterial infections among rheumatoid arthritis patients exposed to tumor necrosis factor α antagonists,” Arthritis and Rheumatism, vol. 56, no. 4, pp. 1125–1133, 2007.
[13]
G. Geri, S. Dadoun, T. Bui et al., “Risk of infections in bronchiectasis during disease-modifying treatment and biologics for rheumatic diseases,” BMC Infectious Diseases, vol. 11, article 304, 2011.
[14]
J. M. Kahlenberg and D. A. Fox, “Advances in the medical treatment of rheumatoid arthritis,” Hand Clinics, vol. 27, no. 1, pp. 11–20, 2011.
[15]
J. D. Greenberg, G. Reed, J. M. Kremer et al., “Association of methotrexate and tumour necrosis factor antagonists with risk of infectious outcomes including opportunistic infections in the CORRONA registry,” Annals of the Rheumatic Diseases, vol. 69, no. 2, pp. 380–386, 2010.
[16]
C. Díaz-Lagares, R. Pérez-Alvarez, F. J. García-Hernández et al., “Rates of, and risk factors for, severe infections in patients with systemic autoimmune diseases receiving biological agents off-label,” Arthritis Research & Therapy, vol. 13, no. 4, article R112, 2011.