Cognitive remediation refers to nonpharmacological methods of improving cognitive function in people with severe mental disorders. Cognitive remediation therapy (CRT) can be delivered via computerised programs, of varying length and complexity, or can be undertaken one-on-one by a trained clinician. There has been a considerable interest in cognitive remediation, driven by recognition that cognitive deficits are a major determinant of outcome in people with severe, chronic mental illnesses. CRT has been shown to be effective, especially if combined with vocational rehabilitation. 1. Cognitive Impairment in Severe Mental Illness The term “severe mental illness” (SMI) is generally taken to encompass chronic psychotic disorders. Whilst many people in this category suffer from schizophrenia, disorders such as schizoaffective disorder, delusional disorder and bipolar disorder are also commonly associated with persistent symptoms, cognitive impairment and long-term disability [1]. Data collected from 1875 people with SMI demonstrated that their current cognitive ability was markedly impaired, compared to the general population. On average, people with psychosis scored 1.6 standard deviations below the general population on a test of information processing speed [1]. There are some differences between diagnostic groups. Children who later develop schizophrenia are more likely to be slow to learn to speak [2] and to have impaired language and arithmetic ability during childhood [3], reflecting neurodevelopmental processes underlying adult schizophrenia [4]. In contrast, people with bipolar disorder tend to have average or superior educational achievement as children, suggesting a different illness trajectory [5]. Nevertheless, despite premorbid differences, cognitive impairment is evident in both affective psychoses (bipolar disorder and psychotic depression) and nonaffective psychoses (schizophrenia) [6] even in the early stages of the disorder. Cognitive impairment is generally most profound and pervasive in schizophrenia [7]. Vocational outcomes are poor in people with SMI, with many experiencing long-term unemployment and welfare dependence, despite evidence that they could gain considerable benefit from engagement in paid employment [8]. Numerous studies have demonstrated an association between the severity of cognitive impairment and functional, social, and occupational outcomes in schizophrenia [9, 10]. Similarly, in bipolar disorder, cognitive deficits have been shown to be associated with reduced psychosocial function [11, 12]. Cognitive impairment is
References
[1]
V. A. Morgan, A. Waterreus, and A. Jablensky, “People living with psychotic illness 2010,” Report on the Second Australian National Survey, Australian Government Department of Health and Ageing, Canberra, Australia, 2011.
[2]
P. Jones, B. Rodgers, R. Murray, and M. Marmot, “Child developmental risk factors for adult schizophrenia in the British 1946 birth cohort,” The Lancet, vol. 344, no. 8934, pp. 1398–1402, 1994.
[3]
D. J. Done, T. J. Crow, E. C. Johnstone, and A. Sacker, “Childhood antecedents of schizophrenia and affective illness: social adjustment at ages 7 and 11,” British Medical Journal, vol. 309, no. 6956, pp. 699–703, 1994.
[4]
R. M. Murray, P. Sham, J. Van Os, J. Zanelli, M. Cannon, and C. McDonald, “A developmental model for similarities and dissimilarities between schizophrenia and bipolar disorder,” Schizophrenia Research, vol. 71, no. 2-3, pp. 405–416, 2004.
[5]
T. Toulopoulou, S. Quraishi, C. McDonald, and R. M. Murray, “The Maudsley Family study: premorbid and current general intellectual function levels in familial bipolar I disorder and schizophrenia,” Journal of Clinical and Experimental Neuropsychology, vol. 28, no. 2, pp. 243–259, 2006.
[6]
S. K. Hill, J. L. Reilly, M. S. H. Harris et al., “A comparison of neuropsychological dysfunction in first-episode psychosis patients with unipolar depression, bipolar disorder, and schizophrenia,” Schizophrenia Research, vol. 113, no. 2-3, pp. 167–175, 2009.
[7]
J. Zanelli, A. Reichenberg, K. Morgan et al., “Specific and generalized neuropsychological deficits: a comparison of patients with various first-episode psychosis presentations,” American Journal of Psychiatry, vol. 167, no. 1, pp. 78–85, 2010.
[8]
D. J. Martino, E. Marengo, A. Igoa et al., “Neurocognitive and symptomatic predictors of functional outcome in bipolar disorders: a prospective 1year follow-up study,” Journal of Affective Disorders, vol. 116, no. 1-2, pp. 37–42, 2009.
[9]
M. Kukla, G. R. Bond, and H. Xie, “A prospective investigation of work and nonvocational outcomes in adults with severe mental illness,” Journal of Nervous and Mental Disease, vol. 200, no. 3, pp. 214–222, 2012.
[10]
M. F. Green, R. S. Kern, D. L. Braff, and J. Mintz, “Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”?” Schizophrenia Bulletin, vol. 26, no. 1, pp. 119–136, 2000.
[11]
R. S. E. Keefe, M. Poe, T. M. Walker, J. W. Kang, and P. D. Harvey, “The schizophrenia cognition rating scale: an interview-based assessment and its relationship to cognition, real-world functioning, and functional capacity,” American Journal of Psychiatry, vol. 163, no. 3, pp. 426–432, 2006.
[12]
B. Solé, C. M. Bonnin, C. Torrent et al., “Neurocognitive impairment and psychosocial functioning in bipolar II disorder,” Acta Psychiatrica Scandinavica, vol. 125, no. 4, pp. 309–317, 2012.
[13]
M. K. O'Connor, L. Mueller, A. van Ormer et al., “Cognitive impairment as barrier to engagement in vocational services among veterans with severe mental illness,” Journal of Rehabilitation Research and Development, vol. 48, no. 5, pp. 597–607, 2011.
[14]
J. M. Gold, R. W. Goldberg, S. W. McNary, L. B. Dixon, and A. F. Lehman, “Cognitive correlates of job tenure among patients with severe mental illness,” American Journal of Psychiatry, vol. 159, no. 8, pp. 1395–1402, 2002.
[15]
C. Galletly, “Recent advances in treating cognitive impairment in schizophrenia,” Psychopharmacology, vol. 202, no. 1–3, pp. 259–273, 2009.
[16]
C. A. Galletly, C. R. Clark, A. C. McFarlane, and D. L. Weber, “The effect of clozapine on the speed and accuracy of information processing in schizophrenia,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 24, no. 8, pp. 1329–1338, 2000.
[17]
A. Sz?ke, A. Trandafir, M.-E. Dupont, A. Méary, F. Schürhoff, and M. Leboyer, “Longitudinal studies of cognition in schizophrenia: meta-analysis,” British Journal of Psychiatry, vol. 192, no. 4, pp. 248–257, 2008.
[18]
J. De Leon and F. J. Diaz, “A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors,” Schizophrenia Research, vol. 76, no. 2-3, pp. 135–157, 2005.
[19]
J. Cooper, S. G. Mancuso, R. Borland, T. Slade, C. Galletly, and D. Castle, “Tobacco smoking among people living with a psychotic illness: the second Australian survey of psychosis,” Australian and New Zealand Journal of Psychiatry, vol. 46, no. 9, pp. 851–863, 2012.
[20]
R. S. Barr, M. A. Culhane, L. E. Jubelt et al., “The effects of transdermal nicotine on cognition in nonsmokers with schizophrenia and nonpsychiatric controls,” Neuropsychopharmacology, vol. 33, no. 3, pp. 480–490, 2008.
[21]
K. E. Lewandowski, S. M. Eack, S. S. Hogarty, D. P. Greenwald, and M. S. Keshavan, “Is cognitive enhancement therapy equally effective for patients with schizophrenia and schizoaffective disorder?” Schizophrenia Research, vol. 125, no. 2-3, pp. 291–294, 2011.
[22]
P. D. Harvey, A. P. Wingo, K. E. Burdick, and R. J. Baldessarini, “Cognition and disability in bipolar disorder: lessons from schizophrenia research,” Bipolar Disorders, vol. 12, no. 4, pp. 364–375, 2010.
[23]
T. Deckersbach, A. A. Nierenberg, R. Kessler et al., “Cognitive rehabilitation for bipolar disorder: an open trial for employed patients with residual depressive symptoms,” CNS Neuroscience and Therapeutics, vol. 16, no. 5, pp. 298–307, 2010.
[24]
R. H. B. Benedict, A. E. Harris, T. Markow, J. A. McCormick, K. H. Nuechterlein, and R. F. Asarnow, “Effects of attention training on information processing in schizophrenia,” Schizophrenia Bulletin, vol. 20, no. 3, pp. 537–546, 1994.
[25]
S. L. Rossell and A. S. David, “Improving performance on the WCST: variations on the original procedure. Wisconsin Card Sorting Test,” Schizophrenia Research, vol. 28, no. 1, pp. 63–76, 1997.
[26]
P. Stratta, F. Mancini, P. Mattei et al., “Remediation of Wisconsin Card Sorting Test performance in schizophrenia. A controlled study,” Psychopathology, vol. 30, no. 2, pp. 59–66, 1997.
[27]
K. E. Harvey, C. A. Galletly, C. Field, and M. Proeve, “The effects of verbalisation on cognitive performance in schizophrenia: a pilot study using tasks from the Delis Kaplan Executive Function System,” Neuropsychological Rehabilitation, vol. 19, no. 5, pp. 733–741, 2009.
[28]
M. Hermanutz and J. Gestrich, “Computer-assisted attention training in schizophrenics. A comparative study,” European Archives of Psychiatry and Clinical Neuroscience, vol. 240, no. 4-5, pp. 282–287, 1991.
[29]
A. Medalia, M. Aluma, W. Tryon, and A. E. Merriam, “Effectiveness of attention training in schizophrenia,” Schizophrenia Bulletin, vol. 24, no. 1, pp. 147–152, 1998.
[30]
C. D. Field, C. Galletly, D. Anderson, and P. Walker, “Computer-aided cognitive rehabilitation: possible application to the attentional deficit of schizophrenia, a report of negative results,” Perceptual and Motor Skills, vol. 85, no. 3, pp. 995–1002, 1997.
[31]
G. E. Hogarty, S. Flesher, R. Ulrich et al., “Cognitive enhancement therapy for schizophrenia: effects of a 2-year randomized trial on cognition and behavior,” Archives of General Psychiatry, vol. 61, no. 9, pp. 866–876, 2004.
[32]
S. R. McGurk and H. Y. Meltzer, “The role of cognition in vocational functioning in schizophrenia,” Schizophrenia Research, vol. 45, no. 3, pp. 175–184, 2000.
[33]
A. Genevsky, C. T. Garrett, P. P. Alexander, and S. Vinogradov, “Cognitive training in schizophrenia: a neuroscience-based approach,” Dialogues in Clinical Neuroscience, vol. 12, no. 3, pp. 416–421, 2010.
[34]
A. Royer, A. Grosselin, C. Bellot et al., “Is there any impact of cognitive remediation on an ecological test in schizophrenia?” Cognitive Neuropsychiatry, vol. 17, no. 1, pp. 19–35, 2012.
[35]
P. D. Harvey and B. A. Cornblatt, “Pharmacological treatment of cognition in schizophrenia: an idea whose method has come,” American Journal of Psychiatry, vol. 165, no. 2, pp. 163–165, 2008.
[36]
K. H. Nuechterlein, M. F. Green, R. S. Kern et al., “The MATRICS consensus cognitive battery, part 1: test selection, reliability, and validity,” American Journal of Psychiatry, vol. 165, no. 2, pp. 203–213, 2008.
[37]
T. Wykes, C. Reeder, S. Landau et al., “Cognitive remediation therapy in schizophrenia: randomised controlled trial,” British Journal of Psychiatry, vol. 190, pp. 421–427, 2007.
[38]
T. Wykes, “Cognitive remediation therapy needs funding,” Nature, vol. 468, no. 7321, pp. 165–166, 2010.
[39]
T. Wykes, V. Huddy, C. Cellard, S. R. McGurk, and P. Czobor, “A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes,” American Journal of Psychiatry, vol. 168, no. 5, pp. 472–485, 2011.
[40]
S. R. McGurk, E. W. Twamley, D. I. Sitzer, G. J. McHugo, and K. T. Mueser, “A meta-analysis of cognitive remediation in schizophrenia,” American Journal of Psychiatry, vol. 164, no. 12, pp. 1791–1802, 2007.
[41]
L. Lecardeur, E. Stip, M. Giguere, G. Blouin, J. P. Rodriguez, and M. Champagne-Lavau, “Effects of cognitive remediation therapies on psychotic symptoms and cognitive complaints in patients with schizophrenia and related disorders: a randomized study,” Schizophrenia Research, vol. 111, no. 1–3, pp. 153–158, 2009.
[42]
M. F. Green, B. Olivier, J. N. Crawley, D. L. Penn, and S. Silverstein, “Social cognition in schizophrenia: recommendations from the MATRICS New Approaches Conference,” Schizophrenia Bulletin, vol. 31, no. 4, pp. 882–887, 2005.
[43]
E. Bora, M. Yucel, and C. Pantelis, “Theory of mind impairment in schizophrenia: meta-analysis,” Schizophrenia Research, vol. 109, no. 1–3, pp. 1–9, 2009.
[44]
P. Stratta, M. Bustini, E. Daneluzzo, I. Riccardi, M. D'Arcangelo, and A. Rossi, “Deconstructing theory of mind in schizophrenia,” Psychiatry Research, vol. 190, no. 1, pp. 32–36, 2011.
[45]
J-P. Lindenmayer, S. R. McGurk, and A. Khan, “Improving social cognition in schizophrenia: a pilot intervention combining computerized social cognition training with cognitive remediation,” Schizophrenia Bulletin. In press.
[46]
W. W?lwer and N. Frommann, “Social-cognitive remediation in schizophrenia: generalization of effects of the training of affect recognition (TAR),” Schizophrenia Bulletin, vol. 37, supplement 2, pp. S63–S70, 2011.
[47]
R. Penadés, R. Catalán, O. Puig et al., “Executive function needs to be targeted to improve social functioning with Cognitive Remediation Therapy (CRT) in schizophrenia,” Psychiatry Research, vol. 177, no. 1-2, pp. 41–45, 2010.
[48]
O. Grynszpan, S. Perbal, A. Pelissolo et al., “Efficacy and specificity of computer-assisted cognitive remediation in schizophrenia: a meta-analytical study,” Psychological Medicine, vol. 41, no. 1, pp. 163–173, 2011.
[49]
S. Moritz, F. Vitzthum, S. Randjbar, R. Veckenstedt, and T. S. Woodward, “Detecting and defusing cognitive traps: metacognitive intervention in schizophrenia,” Current Opinion in Psychiatry, vol. 23, no. 6, pp. 561–569, 2010.
[50]
T. S. Woodward, R. Mizrahi, M. Menon, and B. K. Christensen, “Correspondences between theory of mind, jumping to conclusions, neuropsychological measures and the symptoms of schizophrenia,” Psychiatry Research, vol. 170, no. 2-3, pp. 119–123, 2009.
[51]
R. Balzan, P. Delfabbro, C. Galletly, and T. Woodward, “Metacognitive training for patients with schizophrenia: preliminary evidence for a targeted single-module program,” In Submission.
[52]
R. Balzan, P. Delfabbro, C. Galletly, and T. Woodward, “Reasoning heuristics across the psychosis continuum: the contribution of hypersalient evidence-hypothesis matches,” Cognitive Neuropsychiatry, vol. 17, no. 5, pp. 431–450, 2012.