全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Influence of Self-Efficacy on Mood States in People with Spinal Cord Injury

DOI: 10.1155/2013/232978

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. Negative mood is prevalent in people with a neurological injury such as spinal cord injury (SCI). However, research is needed for determining those people with SCI who are vulnerable to negative mood states, as well as establishing the influence of self-efficacy, that is, expectations of their control over their lives. The objective of this research was to investigate the protective role that self-efficacy may play in adult people with SCI compared to able-bodied controls. Methods. Participants included 41 adults with SCI living in the community and 41 able-bodied controls similar in age, sex ratio, and education. All participants completed a psychological assessment regimen in a relaxed environment. Measures consisted of validated measures of self-efficacy and negative mood states. Results. The SCI group was found to have significantly elevated levels of depressive mood, anxiety, stress, and poor self-efficacy. SCI participants with low levels of self-efficacy were shown to have significantly elevated levels of depressive mood and anxiety in comparison to those SCI participants with high levels of self-efficacy and able-bodied controls. Conclusions. People with a neurological injury such as SCI are vulnerable to experiencing clinically elevated negative mood states if they have poor expectations of control over their lives. Implications for SCI rehabilitation are discussed. 1. Introduction Spinal cord injury (SCI) is a chronic neurological disorder that involves the cord being severely bruised, lacerated, or severed during a traumatic injury or damaged as a result of disease. The risk of suffering an SCI is low; however, when it occurs it is usually very traumatic and debilitating with substantial negative impacts on quality of life (QOL) [1, 2]. Most injuries to the spinal cord in adults involve damage to the surrounding protective vertebral column, consisting of the cervical, thoracic, lumbar, sacral, and the coccygeal vertebrae. Neurological damage resulting from an SCI depends upon the degree to which the injury disturbs or intrudes into the spinal cord [1]. Extreme damage to the spinal cord leads to loss of sensation and paralysis of voluntary muscles, resulting in reduced mobility and independence in activities of daily living and impairment of social and vocational skills. Potential negative influences on respiratory, cardiovascular, urinary, gastrointestinal, and reproductive systems also occur [1]. Furthermore, chronic pain, chronic fatigue, and mental health dysfunction are common secondary conditions that contribute to decreased

References

[1]  M. F. Sommer, Spinal Cord Injury. Functional Rehabilitation, Prentice Hall, New Jersey, NJ, USA, 2001.
[2]  J. Middleton, Y. Tran, and A. Craig, “Relationship between quality of life and self-efficacy in persons with spinal cord injuries,” Archives of Physical Medicine and Rehabilitation, vol. 88, no. 12, pp. 1643–1648, 2007.
[3]  J. Middleton and A. Craig, “Psychological challenges in treating persons with spinal cord injury,” in Psychological Dynamics Associated with Spinal Cord Injury Rehabilitation: New Directions and Best Evidence, A. Craig and Y. Tran, Eds., Nova Science, New York, NY, USA, 2008.
[4]  N. Westgren and R. Levi, “Quality of life and traumatic spinal cord injury,” Archives of Physical Medicine and Rehabilitation, vol. 79, no. 11, pp. 1433–1439, 1998.
[5]  C. H. Bombardier, J. S. Richards, J. S. Krause, D. Tulsky, and D. G. Tate, “Symptoms of major depression in people with spinal cord injury: implications for screening,” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 11, pp. 1749–1756, 2004.
[6]  M. J. Haran, B. B. Lee, M. T. King, O. Marial, and M. R. Stockler, “Health status rated with the medical outcomes study 36-item short-form health survey after spinal cord injury,” Archives of Physical Medicine and Rehabilitation, vol. 86, no. 12, pp. 2290–2295, 2005.
[7]  A. Craig, Y. Tran, and J. Middleton, “Psychological morbidity and spinal cord injury: a systematic review,” Spinal Cord, vol. 47, no. 2, pp. 108–114, 2009.
[8]  N. Wijesuriya, Y. Tran, J. Middleton, and A. Craig, “The impact of fatigue on the health related quality of life in persons with spinal cord injury,” Archives Physical Medicine Rehabilitation, vol. 93, pp. 319–324, 2012.
[9]  A. Craig, Y. Tran, N. Wijesuriya, and J. Middleton, “Fatigue and tiredness in people with spinal cord injury,” Journal of Psychosomatic Research, vol. 73, pp. 205–210, 2012.
[10]  M. P. Jensen, M. J. Chodroff, and R. H. Dworkin, “The impact of neuropathic pain on health-related quality of life: review and implications,” Neurology, vol. 68, no. 15, pp. 1178–1182, 2007.
[11]  A. Bandura, “Self-efficacy: toward a unifying theory of behavioral change,” Psychological Review, vol. 84, no. 2, pp. 191–215, 1977.
[12]  P. D. Martin, G. R. Dutton, and P. J. Brantley, “Self-efficacy as a predictor of weight change in African-American women,” Obesity Research, vol. 12, no. 4, pp. 646–651, 2004.
[13]  G. Robinson-Smith, M. V. Johnston, and J. Allen, “Self-care self-efficacy, quality of life, and depression after stroke,” Archives of Physical Medicine and Rehabilitation, vol. 81, no. 4, pp. 460–464, 2000.
[14]  G. Andrews and A. Craig, “Prediction of outcome after treatment for stuttering,” British Journal of Psychiatry, vol. 153, pp. 236–240, 1988.
[15]  J. W. Middleton, R. L. Tate, and T. J. Geraghty, “Self-efficacy and spinal cord injury: psychometric properties of a new scale,” Rehabilitation Psychology, vol. 48, no. 4, pp. 281–288, 2003.
[16]  W. Horn, W. Yoels, D. Wallace, D. Macrina, and M. Wrigley, “Determinants of self-efficacy among persons with spinal cord injuries,” Disability and Rehabilitation, vol. 20, no. 4, pp. 138–141, 1998.
[17]  A. R. Craig, K. M. Hancock, and H. G. Dickson, “Spinal cord injury: a search for determinants of depression two years after the event,” British Journal of Clinical Psychology, vol. 33, no. 2, pp. 221–230, 1994.
[18]  A. R. Craig, K. Hancock, and E. Chang, “The influence of spinal cord injury on coping styles and self-perceptions two years after the injury,” Australian and New Zealand Journal of Psychiatry, vol. 28, no. 2, pp. 307–312, 1994.
[19]  S. H. Lovibond and P. F. Lovibond, Manual for the Depression Anxiety Stress Scales, Psychology Foundation, Sydney, Australia, 1995.
[20]  J. D. Henry and J. R. Crawford, “The short-form version of the depression anxiety stress scales (DASS-21): construct validity and normative data in a large non-clinical sample,” British Journal of Clinical Psychology, vol. 44, no. 2, pp. 227–239, 2005.
[21]  A. Craig, K. Hancock, and M. Craig, “The lifestyle appraisal questionnaire: a comprehensive assessment of health and stress,” Psychology and Health, vol. 11, no. 3, pp. 331–343, 1996.
[22]  J. Cohen, Statistical Power Analysis for the Behavioral Sciences, LEA, New Jersey, NJ, USA, 1988.
[23]  P. J. Siddall, J. M. McClelland, S. B. Rutkowski, and M. J. Cousins, “A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury,” Pain, vol. 103, no. 3, pp. 249–257, 2003.
[24]  M. Rutter, “Resilience in the face of adversity: protective factors and resistance to psychiatric disorder,” British Journal of Psychiatry, vol. 147, pp. 598–611, 1985.
[25]  A. Craig, “Resilience in people with physical disabilities,” in The Oxford Handbook of Rehabilitation Psychology, P. Kennedy, Ed., chapter 26, Oxford University Press, Oxford, UK, 2012.
[26]  P. Arnstein, M. Caudill, C. L. Mandle, A. Norris, and R. Beasley, “Self efficacy as a mediator of the relationship between pain intensity, disability and depression in chronic pain patients,” Pain, vol. 80, no. 3, pp. 483–491, 1999.
[27]  P. K. Maciejewski, H. G. Prigerson, and C. M. Mazure, “Self-efficacy as a mediator between stressful life events and depressive symptoms. Differences based on history of prior depression,” British Journal of Psychiatry, vol. 176, pp. 373–378, 2000.
[28]  A. Craig, K. Hancock, and H. Dickson, “Improving the long-term adjustment of spinal cord injured persons,” Spinal Cord, vol. 37, no. 5, pp. 345–350, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133