The purposes of this paper are as follows (1) to describe the prevalence, etiology, and care settings for children dependent on long-term mechanical ventilation (MV); (2) to provide a brief introduction to MV and weaning; (3) to explore health care utilization and cost of care; and, primarily, (4) to discuss the rehabilitation needs of children dependent on long-term MV including activities of daily living, mobility, communication, psychosocial needs, and recreation and leisure. Children with ventilator dependence are a growing segment of the population of children with special health care needs and often require rehabilitation services. MV is a form of life-saving technology that substitutes for or assists a child’s respiratory efforts. Goals for use of MV vary and there are many combinations of MV elements that can obtain desirable results. No standards of care exist for the rehabilitation examination or interventions utilized for children with long-term MV dependence and it remains unclear what effect MV has on the achievement of developmental milestones, daily activities, and participation in daily life. 1. Introduction Advances in obstetric care, neonatal intensive care, and pediatric critical care medicine have resulted in a growing population of children dependent on long-term mechanical ventilation (MV). Additionally, advances in medical technology are allowing children to live in to adulthood and the increasing use of portable ventilators is allowing children to be managed at home and in their communities [1–5]. While children dependent on long-term MV remain a small percentage of the overall group of children requiring rehabilitation services, studies indicate that this group of children continues to grow around the world [3, 6–11]. Children dependent on long-term MV require rehabilitation services to address impairments, functional limitations, and participation restrictions in daily activities due to their injury, illness, or disease process. The purposes of this paper are as follows: (1) to describe the prevalence, etiology, and care settings for children dependent on long-term mechanical ventilation (MV); (2) to provide a brief introduction to MV and weaning; (3) to explore health care utilization and cost of care; and, primarily, (4) to discuss the rehabilitation needs of children dependent on long-term MV including activities of daily living, mobility, communication, psychosocial needs and recreation and leisure. 2. Who Are the Children Dependent on Long-Term Mechanical Ventilation? Children dependent on MV present with varied diagnoses
References
[1]
T. D. Simon, J. Berry, C. Feudtner et al., “Children with complex chronic conditions in inpatient hospital settings in the United States,” Pediatrics, vol. 126, no. 4, pp. 647–655, 2010.
[2]
P. C. Van Dyck, M. D. Kogan, M. G. McPherson, G. R. Weissman, and P. W. Newacheck, “Prevalence and characteristics of children with special health care needs,” Archives of Pediatrics and Adolescent Medicine, vol. 158, no. 9, pp. 884–890, 2004.
[3]
R. J. Graham, E. W. Fleegler, and W. M. Robinson, “Chronic ventilator need in the community: a 2005 pediatric census of Massachusetts,” Pediatrics, vol. 119, no. 6, pp. e1280–e1287, 2007.
[4]
S. L. Peterson-Carmichael and I. M. Cheifetz, “The chronically critically ill patient: pediatric considerations,” Respiratory Care, vol. 57, no. 6, pp. 993–1002, 2012.
[5]
M. P. Donahoe, “Current venues of care and related costs for the chronically critically ill,” Respiratory Care, vol. 57, no. 6, pp. 867–886, 2012.
[6]
M. Gowans, H. T. Keenan, and S. L. Bratton, “The population prevalence of children receiving invasive home ventilation in Utah,” Pediatric Pulmonology, vol. 42, no. 3, pp. 231–236, 2007.
[7]
S. Oktem, R. Ersu, Z. S. Uyan et al., “Home ventilation for children with chronic respiratory failure in Istanbul,” Respiration, vol. 76, no. 1, pp. 76–81, 2008.
[8]
M. Kamm, R. Burger, P. Rimenzsberger, A. Knoblauch, and Jürg Hammer, “Survey of children supported by long-term mechanical ventilation in Switzerland,” Swiss Medical Weekly, vol. 131, no. 19-20, pp. 261–266, 2001.
[9]
F. Racca, G. Berta, M. Sequi et al., “Long-term home ventilation of children in Italy: a national survey,” Pediatric Pulmonology, vol. 46, no. 6, pp. 566–572, 2011.
[10]
N. Salahuddin, K. Haider, S. J. Husain et al., “Outcome of home mechanical ventilation,” Journal of the College of Physicians and Surgeons Pakistan, vol. 15, no. 7, pp. 387–390, 2005.
[11]
A. Sovtic, P. Minic, M. Vukcevic, G. Markovic-Sovtic, M. Rodic, and M. Gajic, “Home mechanical ventilation in children is feasible in developing countries,” Pediatrics International, vol. 54, no. 5, pp. 676–681, 2012.
[12]
J. E. O'Brien, D. J. Birnkrant, H. M. Dumas et al., “Weaning children from mechanical ventilation in a post-acute care setting,” Pediatric Rehabilitation, no. 4, pp. 365–372, 2006.
[13]
G. B. Mallory and P. C. Stillwell, “The ventilator-dependent child: issues in diagnosis and management,” Archives of Physical Medicine and Rehabilitation, vol. 72, no. 1, pp. 43–55, 1991.
[14]
W. B. Wheeler, E. L. Maguire, S. C. Kurachek, J. G. Lobas, J. H. Fugate, and J. J. McNamara, “Chronic respiratory failure of infancy and childhood: clinical outcomes based on underlying etiology,” Pediatric Pulmonology, vol. 17, no. 1, pp. 1–5, 1994.
[15]
R. S. Amin and C. M. Fitton, “Tracheostomy and home ventilation in children,” Seminars in Neonatology, vol. 8, no. 2, pp. 127–135, 2003.
[16]
J. Allen, “Pulmonary complications of neuromuscular disease: a Respiratory mechanics perspective,” Paediatric Respiratory Reviews, vol. 11, no. 1, pp. 18–23, 2010.
[17]
B. A. Pletcher and N. L. Turcios, “Pulmonary complications of manifestations of genetic disorders,” Paediatric Respiratory Reviews, vol. 13, pp. 2–9, 2012.
[18]
R. Buschbacher, “Outcomes and problems in pediatric pulmonary rehabilitation,” American Journal of Physical Medicine and Rehabilitation, vol. 74, no. 4, pp. 287–293, 1995.
[19]
E. Monteverde, A. Fernández, R. Poterala et al., “Characterization of pediatric patients receiving prolonged mechanical ventilation,” Pediatric Critical Care Medicine, vol. 12, no. 6, pp. e287–e291, 2012.
[20]
D. G. Cushman, H. M. Dumas, S. M. Haley, J. E. O'Brien, and V. S. Kharasch, “Re-admissions to inpatient paediatric pulmonary rehabilitation,” Pediatric Rehabilitation, vol. 5, no. 3, pp. 133–139, 2002.
[21]
S. S. Kun, J. D. Edwards, S. L. D. Ward, and T. G. Keens, “Hospital readmission for newly discharged pediatric home mechanical ventilation patients,” Pediatric Pulmonology, vol. 47, no. 4, pp. 409–414, 2012.
[22]
M. Canlas-Yamsuan, I. Sanchez, M. Kesselman, and V. Chernick, “Morbidity and mortality patterns of ventilator-dependent children in a home care program,” Clinical Pediatrics, vol. 32, no. 12, pp. 706–713, 1993.
[23]
D. Boroughs and J. A. Dougherty, “Decreasing accidental mortality of ventilator-dependent children at home: a call to action,” Home Healthcare Nurse, vol. 30, no. 2, pp. 103–111, 2012.
[24]
J. E. O'Brien, S. M. Haley, H. M. Dumas et al., “Outcomes of post-acute hospital episodes for young children requiring airway support,” Developmental Neurorehabilitation, vol. 10, no. 3, pp. 241–247, 2007.
[25]
I. M. Cheifetz, “Invasive and noninvasive pediatric mechanical ventilation,” Respiratory Care, vol. 48, no. 4, pp. 442–453, 2004.
[26]
B. J. Make, “Epidemiology of long-term ventilatory assistance,” in Long-Term Mechanical Ventilation, N. S. Hill, Ed., vol. 1, pp. 1–18, Marcel Dekker, New York, NY, USA, 2001.
[27]
P. Prabhakaran, W. Sasser, and S. Borasino, “Pediatric mechanical ventilation,” Minerva Pediatrica, vol. 63, no. 5, pp. 411–424, 2011.
[28]
P. K. Maheshwari, M. R. Khan, and J. Haque, “Elective tracheostomy in mechanically ventilated children,” Journal of College of Physicians and Surgeons Pakistan, vol. 22, no. 6, pp. 414–415, 2012.
[29]
T. Spentzas, M. Auth, P. Hess, M. Minarik, S. Storgion, and G. Stidham, “Natural course following pediatric tracheostomy,” Journal of Intensive Care Medicine, vol. 25, no. 1, pp. 39–45, 2010.
[30]
J. M. Graf, B. A. Montagnino, R. Hueckel, and M. L. McPherson, “Pediatric tracheostomies: a recent experience from one academic center,” Pediatric Critical Care Medicine, vol. 9, no. 1, pp. 96–100, 2008.
[31]
R. Branson, “Understanding and implementing advances in ventilator capabilities,” Current Opinion in Critical Care, vol. 10, no. 1, pp. 23–32, 2004.
[32]
J. M. Shneerson, “Home mechanical ventilation in children: techniques, outcomes and ethics,” Monaldi Archives for Chest Disease, vol. 51, no. 5, pp. 426–430, 1996.
[33]
V. S. Kharasch, S. M. Haley, H. M. Dumas, L. H. Ludlow, and J. E. O'Brien, “Oxygen and ventilator weaning during inpatient pediatric pulmonary rehabilitation,” Pediatric Pulmonology, vol. 35, no. 4, pp. 280–287, 2003.
[34]
A. G. Randolph, D. Wypij, S. T. Venkataraman et al., “Effect of mechanical ventilator weaning protocols on respiratory outcomes in infants and children: a randomized controlled trial,” Journal of the American Medical Association, vol. 288, no. 20, pp. 2561–2568, 2002.
[35]
D. R. Gracey and R. D. Hubmayr, “Weaning from long-term mechanical ventilation,” in Long-Term Mechanical Ventilation, N. S. Hill, Ed., vol. 1, pp. 431–448, Marcel Dekker, New York, NY, USA, 2001.
[36]
A. S. Graham and A. L. Kirby, “Ventilator management protocols in pediatrics,” Respiratory Care Clinics of North America, vol. 12, no. 3, pp. 389–402, 2006.
[37]
J. E. O'Brien, H. M. Dumas, S. M. Haley et al., “Ventilator weaning outcomes in chronic respiratory failure in children,” International Journal of Rehabilitation Research, vol. 30, no. 2, pp. 171–174, 2007.
[38]
J. K. Mah, J. E. Thannhauser, H. Kolski, and D. Dewey, “Parental stress and quality of life in children with neuromuscular disease,” Pediatric Neurology, vol. 39, no. 2, pp. 102–107, 2008.
[39]
R. L. Gilgoff and I. S. Gilgoff, “Long-term follow-up of home mechanical ventilation in young children with spinal cord injury and neuromuscular conditions,” Journal of Pediatrics, vol. 142, no. 5, pp. 476–480, 2003.
[40]
E. A. Edwards, M. O'Toole, and C. Wallis, “Sending children home on tracheostomy dependent ventilation: pitfalls and outcomes,” Archives of Disease in Childhood, vol. 89, no. 3, pp. 251–255, 2004.
[41]
B. R. Vohr, L. L. Wright, A. M. Dusick et al., “Center differences and outcomes of extremely low birth weight infants,” Pediatrics, vol. 113, no. 4 I, pp. 781–789, 2004.
[42]
C. Traiber, J. P. Piva, C. C. Fritsher et al., “Profile and consequences of children requiring prolonged mechanical ventilation in three Brazilian pediatric intensive care units,” Pediatric Critical Care Medicine, vol. 10, no. 3, pp. 375–380, 2009.
[43]
M. Hanashiro, A. O. C. Franco, A. A. Ferraro, and E. J. Troster, “Care alternatives for pediatric chronic mechanical ventilation,” Jornal de Pediatria, vol. 87, no. 2, pp. 145–149, 2011.
[44]
I. U. Ambrosio, M. S. Woo, M. T. Jansen, and T. G. Keens, “Safety of hospitalized ventilator-dependent children outside of the intensive care unit,” Pediatrics, vol. 101, no. 2, pp. 257–259, 1998.
[45]
J. D. Edwards, C. Rivanis, S. S. Kun, A. B. Caughey, and T. G. Keens, “Costs of hospitalized ventilator-dependent children: differences between a ventilator ward and intensive care unit,” Pediatric Pulmonology, vol. 46, no. 4, pp. 356–361, 2011.
[46]
V. S. Nelson, P. J. Dixon, and S. A. Warschausky, “Long-term outcome of children with high tetraplegia and ventilator dependence,” The Journal of Spinal Cord Medicine, vol. 27, supplement 1, pp. S93–S97, 2004.
[47]
J. E. O'Brien and H. M. Dumas, “Hospital length of stay, discharge disposition and reimbursement by clinical program group in pediatric post-acute rehabilitation,” Journal of Pediatric Rehabilitation Medicine. In press.
[48]
J. E. O'Brien, H. M. Dumas, S. M. Haley et al., “Clinical findings and resource use of infants and toddlers dependent on oxygen and ventilators,” Clinical Pediatrics, vol. 41, no. 3, pp. 155–162, 2002.
[49]
A. Jung, I. Heinrichs, C. Geidel, and R. Lauener, “Inpatient paediatric rehabilitation in chronic respiratory disorders,” Paediatric Respiratory Reviews, vol. 13, no. 2, pp. 123–129, 2012.
[50]
M. Katz-Leurer, E. Be'eri, and D. Zilbershtein, “Discharge of respiratory-compromised children after respiratory rehabilitation,” Israel Medical Association Journal, vol. 8, no. 7, pp. 473–476, 2006.
[51]
H. M. Dumas, E. L. Rosen, S. M. Haley, M. A. Fragala-Pinkham, P. Ni, and J. E. O'Brien, “Measuring physical function in children with airway support: a pilot study using computer adaptive testing,” Developmental Neurorehabilitation, vol. 13, no. 2, pp. 95–102, 2010.
[52]
G. Ottonello, I. Ferrari, I. M. G. Pirroddi et al., “Home mechanical ventilation in children: retrospective survey of a pediatric population,” Pediatrics International, vol. 49, no. 6, pp. 801–805, 2007.
[53]
J. Noyes, “Health and quality of life of ventilator-dependent children,” Journal of Advanced Nursing, vol. 56, no. 4, pp. 392–403, 2006.
[54]
J. Noyes, “Barriers that delay children and young people who are dependent on mechanical ventilators from being discharged from hospital,” Journal of Clinical Nursing, vol. 11, no. 1, pp. 2–11, 2002.
[55]
E. Jardine and C. Wallis, “Core guidelines for the discharge home of the child on long term assisted ventilation in the United Kingdom,” Thorax, vol. 53, no. 9, pp. 762–767, 1998.
[56]
D. K. Tearl and J. H. Hertzog, “Home discharge of technology-dependent children: evaluation of a respiratory-therapist driven family education program,” Respiratory Care, vol. 52, no. 2, pp. 171–176, 2007.
[57]
S. Kirk and C. Glendinning, “Developing services to support parents caring for a technology-dependent child at home,” Child: Care, Health and Development, vol. 30, no. 3, pp. 209–218, 2004.
[58]
N. Bezruczko, S. P. Chen, C. D. Hill, and J. M. Chesniak, “Measurement of mothers' confidence to care for children assisted with tracheostomy technology in family homes,” Journal of Applied Measurement, vol. 12, no. 4, pp. 339–357, 2011.
[59]
K. W. K. Wang and A. Barnard, “Technology-dependent children and their families: a review,” Journal of Advanced Nursing, vol. 45, no. 1, pp. 36–46, 2004.
[60]
K. W. K. Wang and A. Barnard, “Caregivers' experiences at home with a ventilator-dependent child,” Qualitative Health Research, vol. 18, no. 4, pp. 501–508, 2008.
[61]
J. G. Berry, D. E. Hall, D. Z. Kuo et al., “Hospital utilization and characteristics of patients experiencing recurrent readmissions within children's hospitals,” Journal of the American Medical Association, vol. 305, no. 7, pp. 682–690, 2011.
[62]
F. A. Carnevale, E. Alexander, M. Davis, J. Rennick, and R. Troini, “Daily living with distress and enrichment: the moral experience of families with ventilator-assisted children at home,” Pediatrics, vol. 117, no. 1, pp. e48–e60, 2006.
[63]
H. Margolan, J. Fraser, and S. Lenton, “Parental experience of services when their child requires long-term ventilation. Implications for commissioning and providing services,” Child: Care, Health and Development, vol. 30, no. 3, pp. 257–264, 2004.
[64]
Y. Sakakihara, T. Yamanaka, M. Kajii, and S. Kamoshita, “Long-term ventilator-assisted children in Japan: a national survey,” Acta Paediatrica Japonica, vol. 38, no. 2, pp. 137–142, 1996.
[65]
F. M. Paulides, F. B. Pl?tz, L. P. Verweij-van den Oudenrijn, J. P. van Gestel, and M. J. Kampelmacher, “Thirty years of home mechanical ventilation in children: escalating need for pediatric intensive care beds,” Intensive Care Medicine, vol. 38, no. 5, pp. 847–852, 2012.
[66]
S. H. Hsia, J. J. Lin, I. A. Huang, and C. T. Wu, “Outcome of long-term mechanical ventilation support in children,” Pediatrics & Neonatology, vol. 53, no. 5, pp. 304–308, 2012.
[67]
C. Wallis, J. Y. Paton, S. Beaton, and E. Jardine, “Children on long-term ventilatory support: 10 years of progress,” Archives of Disease in Childhood, vol. 96, no. 11, pp. 998–1002, 2011.
[68]
E. Jardine, M. O'Toole, J. Y. Paton, and C. Wallis, “Current status of long term ventilation of children in the United Kingdom: questionnaire survey,” British Medical Journal, vol. 318, no. 7179, pp. 295–299, 1999.
[69]
E. A. Edwards, K. Hsiao, and G. M. Nixon, “Paediatric home ventilatory support: the Auckland experience,” Journal of Paediatrics and Child Health, vol. 41, no. 12, pp. 652–658, 2005.
[70]
D. S. Boroughs and J. Dougherty, “A multidisciplinary approach to the care of the ventilator-dependent child at home: a case study,” Home Healthcare Nurse, vol. 28, no. 1, pp. 24–28, 2010.
[71]
B. H. Y. Chung, V. C. N. Wong, and P. Ip, “Spinal muscular atrophy: survival pattern and functional status,” Pediatrics, vol. 114, no. 5, pp. e548–e553, 2004.
[72]
G. Montagnani, G. Vagheggini, E. P. Vlad, D. Berrighi, L. Pantani, and N. Ambrosino, “Use of the functional independence measure in people for whom weaning from mechanical ventilation is difficult,” Physical Therapy, vol. 91, no. 7, pp. 1109–1115, 2011.
[73]
A. Fex, A. C. Ek, and O. S?derhamn, “Self-care among persons using advanced medical technology at home,” Journal of Clinical Nursing, vol. 18, no. 20, pp. 2809–2817, 2009.
[74]
S. B. Leder, K. E. Baker, and T. R. Goodman, “Dysphagia testing and aspiration status in medically stable infants requiring mechanical ventilation via tracheotomy,” Pediatric Critical Care Medicine, vol. 11, no. 4, pp. 484–487, 2010.
[75]
P. Minar, J. Garland, A. Martinez, and S. Werlin, “Safety of percutaneous endoscopic gastrostomy in medically complicated infants,” Journal of Pediatric Gastroenterology and Nutrition, vol. 53, no. 3, pp. 293–295, 2011.
[76]
E. C. Lewis, B. Connolly, M. Temple et al., “Growth outcomes and complications after radiologic gastrostomy in 120 children,” Pediatric Radiology, vol. 38, no. 9, pp. 963–970, 2008.
[77]
M. D. Leclair and Y. Héloury, “Non-neurogenic elimination disorders in children,” Journal of Pediatric Urology, vol. 6, no. 4, pp. 338–345, 2010.
[78]
J. C. Haffner and S. J. Schurman, “The technology-dependent child,” Pediatric Clinics of North America, vol. 48, no. 3, pp. 751–764, 2001.
[79]
J. C. Lumeng, S. A. Warschausky, V. S. Nelson, and K. Augenstein, “The quality of life of ventilator-assisted children,” Pediatric Rehabilitation, vol. 4, no. 1, pp. 21–27, 2001.
[80]
T. Asano, H. Enokido, O. Fujino, and K. Hashimoto, “Improvement in daily activities using a portable ventilator in a patient with spondyloepiphyseal dysplasia congenita,” Pediatrics International, vol. 43, no. 3, pp. 316–318, 2001.
[81]
J. Choi, F. J. Tasota, and L. A. Hoffman, “Mobility interventions to improve outcomes in patients undergoing prolonged mechanical ventilation: a review of the literature,” Biological Research for Nursing, vol. 10, no. 1, pp. 21–33, 2008.
[82]
U. J. Martin, “Whole-body rehabilitation in long-term ventilation,” Respiratory Care Clinics of North America, vol. 8, no. 4, pp. 593–609, 2002.
[83]
S. Singh, S. Harrison, L. Houchen, and K. Wagg, “Exercise assessment and training in pulmonary rehabilitation for patients with COPD,” European Journal of Physical and Rehabilitation Medicine, vol. 47, no. 3, pp. 483–497, 2011.
[84]
D. Mereles, N. Ehlken, S. Kreuscher et al., “Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension,” Circulation, vol. 114, no. 14, pp. 1482–1489, 2006.
[85]
T. Troosters and H. V. Remoortel, “Pulmonary rehabilitation and cardiovascular disease,” Seminars in respiratory and critical care medicine, vol. 30, no. 6, pp. 675–683, 2009.
[86]
M. Thomas, A. Greenough, and M. Morton, “Prolonged ventilation and intact survival in very low birth weight infants,” European Journal of Pediatrics, vol. 162, no. 2, pp. 65–67, 2003.
[87]
S. F. Jeng, K. I. T. Yau, H. F. Liao, L. C. Chen, and P. S. Chen, “Prognostic factors for walking attainment in very low-birthweight preterm infants,” Early Human Development, vol. 59, no. 3, pp. 159–173, 2000.
[88]
E. A. Gaillard, R. W. I. Cooke, and N. J. Shaw, “Improved survival and neurodevelopmental outcome after prolonged ventilation in preterm neonates who have received antenatal steroids and surfactant,” Archives of Disease in Childhood, vol. 84, no. 3, pp. F194–F196, 2001.
[89]
J. M. Luchi, F. C. Bennett, and J. C. Jackson, “Predictors of neurodevelopmental outcome following bronchopulmonary dysplasia,” American Journal of Diseases of Children, vol. 145, no. 7, pp. 813–817, 1991.
[90]
W. Dieperink, J. F. Goorhuis, W. de Weerd, A. Hazenberg, J. G. Zijlstra, and M. W. N. Nijsten, “Walking with continuous positive airway pressure,” European Respiratory Journal, vol. 27, no. 4, pp. 853–855, 2006.
[91]
G. J. Criner, “Care of the patient requiring invasive mechanical ventilation,” Respiratory Care Clinics of North America, vol. 8, no. 4, pp. 575–592, 2002.
[92]
H. M. Dumas, M. A. Fragala-Pinkham, E. L. Rosen et al., “Cardiorespiratory response during physical therapist intervention for infants and young children with chronic respiratory insufficiency,” Pediatric Physical Therapy. In press.
[93]
L. E. Driver, V. S. Nelson, and S. A. Warschausky, The Ventilator-Assisted Child: A Practical Resource Guide, The Psychological Corporation, San Antonio, Tex, USA, 1997.
[94]
American Academy of Pediatrics and Committee on Injury and Poison Prevention, “Transporting children with special health care needs (RE9852),” Pediatric, vol. 104, no. 4, pp. 988–992, 1999.
[95]
E. M. Hull, H. M. Dumas, R. A. Crowley, and V. S. Kharasch, “Tracheostomy speaking valves for children: tolerance and clinical benefits,” Pediatric Rehabilitation, vol. 8, no. 3, pp. 214–219, 2005.
[96]
D. Jiang and G. A. J. Morrison, “The influence of long-term tracheostomy on speech and language development in children,” International Journal of Pediatric Otorhinolaryngology, vol. 67, supplement 1, pp. S217–S220, 2003.
[97]
D. R. Hess, “Facilitating speech in the patient with a tracheostomy,” Respiratory Care, vol. 50, no. 4, pp. 519–525, 2005.
[98]
J. Fraser, A. Pengilly, and Q. Mok, “Long-term ventilator-dependent children: a vocal profile analysis,” Pediatric Rehabilitation, vol. 2, no. 2, pp. 71–75, 1998.
[99]
E. Ward, T. Morgan, S. McGowan, A. L. Spurgin, and M. Solley, “Preparation, clinical support, and confidence of speech-language therapists managing clients with a tracheostomy in the UK,” International Journal of Language & Communication Disorders, vol. 47, no. 3, pp. 322–332, 2012.
[100]
J. Hammer, “Home mechanical ventilation in children: indications and practical aspects,” Schweizerische Medizinische Wochenschrift, vol. 130, no. 49, pp. 1894–1902, 2000.
[101]
K. Dybwik, T. Toll?li, E. W. Nielsen, and B. S. Brinchmann, “Fighting the system: families caring for ventilator-dependent children and adults with complex health care needs at home,” BMC Health Services Research, vol. 11, article no. 156, 2011.
[102]
L. J. Meltzer, D. S. Boroughs, and J. J. Downes, “The relationship between home nursing coverage, sleep, and daytime functioning in parents of ventilator-assisted children,” Journal of Pediatric Nursing, vol. 25, no. 4, pp. 250–257, 2010.
[103]
J. Heaton, J. Noyes, P. Sloper, and R. Shah, “Families' experiences of caring for technology-dependent children: a temporal perspective,” Health and Social Care in the Community, vol. 13, no. 5, pp. 441–450, 2005.
[104]
P. A. Kuster and L. K. Badr, “Mental health of mothers caring for ventilator-assisted children at home,” Issues in Mental Health Nursing, vol. 27, no. 8, pp. 817–835, 2006.
[105]
M. E. O'Brien and C. B. Wegner, “Rearing the child who is technology dependent: perceptions of parents and home care nurses,” Journal for Specialists in Pediatric Nursing, vol. 7, no. 1, pp. 7–15, 2002.
[106]
D. Boroughs and J. A. Dougherty, “Care of technology-dependent children in the home,” Home Healthcare Nurse, vol. 27, no. 1, pp. 37–42, 2009.
[107]
K. Feehan, M. E. O'Neil, D. Abdalla et al., “Factors influencing physical activity in children and youth with special health care needs: a pilot study,” International Journal of Pediatrics, vol. 2012, Article ID 583249, 11 pages, 2012.
[108]
G. Dwyer, L. Baur, J. Higgs, and L. Hardy, “Promoting children's health and well-being: broadening the therapy perspective,” Physical and Occupational Therapy in Pediatrics, vol. 29, no. 1, pp. 27–43, 2009.
[109]
M. A. Fragala-Pinkham, H. M. Dumas, M. Boyce, C. Y. Peters, and S. M. Haley, “Evaluation of an adaptive ice skating programme for children with disabilities,” Developmental Neurorehabilitation, vol. 12, no. 4, pp. 215–223, 2009.
[110]
M. A. Fragala-Pinkham, S. M. Haley, J. Rabin, and V. S. Kharasch, “A fitness program for children with disabilities,” Physical Therapy, vol. 85, no. 11, pp. 1182–1200, 2005.
[111]
S. Krcmar, “Room to breathe,” RT: for Decision Makers in Respiratory Care, Allied Media, 2006.
[112]
J. Noyes, C. Godfrey, and J. Beecham, “Resource use and service costs for ventilator-dependent children and young people in the UK,” Health and Social Care in the Community, vol. 14, no. 6, pp. 508–522, 2006.
[113]
B. D. Benneyworth, A. Gebremariam, S. J. Clark, T. P. Shanley, and M. M. Davis, “Inpatient health care utilization for children dependent on long-term mechanical ventilation,” Pediatrics, vol. 127, no. 6, pp. e1533–e1541, 2011.
[114]
N. Bayley, Bayley Scales of Infant Development, Psychological Corporation, San Antonio, Tex, USA, 3rd edition, 2005.
[115]
A. Valcamonico, P. Accorsi, C. Sanzeni et al., “Mid- and long-term outcome of extremely low birth weight (ELBW) infants: an analysis of prognostic factors,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 20, no. 6, pp. 465–471, 2007.
[116]
K. Patra, D. Wilson-Costello, H. G. Taylor, N. Mercuri-Minich, and M. Hack, “Grades I-II intraventricular hemorrhage in extremely low birth weight infants: effects on neurodevelopment,” Journal of Pediatrics, vol. 149, no. 2, pp. 169–173, 2006.
[117]
E. C. Cameron and V. Maehle, “Comparison of active motor items in infants born preterm and infants born full term,” Pediatric Physical Therapy, vol. 18, no. 3, pp. 197–203, 2006.
[118]
E. C. Cameron, V. Maehle, and J. Reid, “The effects of an early physical therapy intervention for very preterm, very low birth weight infants: a randomized controlled clinical trial,” Pediatric Physical Therapy, vol. 17, no. 2, pp. 107–119, 2005.
[119]
R. Lekskulchai and J. Cole, “Effect of a developmental program on motor performance in infants born preterm,” Australian Journal of Physiotherapy, vol. 47, no. 3, pp. 169–176, 2001.
[120]
S. M. Haley, W. J. Coster, L. H. Ludlow, J. T. Haltiwanger, and P. A. Andrellos, Pediatric Evaluation of Disability Inventory: Development, Standardization and Administration Manual, Trustees of Boston University, Boston, Mass, USA, 1992.