全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The European Hot Spot of B[a]P and PM2.5 Exposure—The Ostrava Region, Czech Republic: Health Research Results

DOI: 10.1155/2013/416701

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Ostrava Region in the Czech Republic is a heavily polluted industrial area. Concentrations of PM10, PM2.5, and benzo[a]pyrene (B[a]P) significantly exceed limit values. To investigate the impact of these levels on human health, epidemiological, molecular epidemiology, and in vitro studies were done in 2008–2011. Morbidity of children was followed in 10 pediatric districts. In the most polluted district, children suffered higher incidence of acute respiratory diseases in the first year of life, and higher prevalence of asthma bronchiale. Gene expression was studied in children from Ostrava and from a control rural area. Genes specific to asthma bronchiale differed, suggesting a different molecular phenotype in children in the polluted region compared to children in the control area. A molecular epidemiology study showed adverse effect of the Ostrava exposures, but also an increased expression of XRCC5, which probably protects these exposed subjects against the degree of genetic damage that would otherwise be expected. In vitro studies clearly related concentration of B[a]P from PM2.5 extracts to induced PAH-DNA adducts. These studies clearly demonstrate that under the present local environmental conditions, the health of the population is severely impaired and will likely remain so for a significant period of time. 1. Introduction The Moravian-Silesian Region (MSR) is a heavily populated industrial area situated in the easternmost part of the Czech Republic (CR), covering 5?427?km2 with 1,25 million inhabitants [1]. The MSR is situated in a basin bordered by mountains from west, east, and partially from south, with frequent temperature inversions in winter. Since the 2nd half of the 18th century, the region is characterized by coal mining, processing of coal, and metallurgy. The MSR administrative structure consists of six districts (from the west: Bruntál, Opava, Novy Ji?ín, Ostrava city, Karviná, and Frydek-Místek). The Karviná district is one of the most densely populated districts of the Czech Republic (789 inhabitants/km2). The most important current industries are metallurgy, steel, coke ovens, coal mining, and power generation. The population density in the MSR is also associated with high-intensity local vehicular transport and local heating. Almost fifty percent of the inhabitants use central heating, 34% natural gas, 10% coal, 3% electricity, and 3% wood [2]. This paper provides an overview of air pollution levels in the Ostrava Region (OSTR, city of Ostrava and the district of Karviná) for the period (2002–2011), and a summary of findings

References

[1]  Czech Statistical Office, 2010, http://www.czso.cz/eng/redakce.nsf/i/home.
[2]  Czech Environmental Information Agency, State of the Environment in Different Regions of the Czech Republic in 2009, CENIA, 2011.
[3]  Czech Hydrometeorological Institute, CHMI, February 2013, http://portal.chmi.cz/files/portal/docs/uoco/isko/tab_roc/tab_roc_EN.html.
[4]  Y. Zhang and S. Tao, “Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004,” Atmospheric Environment, vol. 43, no. 4, pp. 812–819, 2009.
[5]  P. Hapala, Analysis of the Air Quality on the Territory of City of Ostrava and the Legislation on Air Protection 2008-2009, Health Institute in Ostrava, Ostrava, Czech Republic, 2012.
[6]  World Health Organisation, WHO Guidelines for Indoor Air Quality: Selected Pollutants, WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe, 2010.
[7]  F. Mazzoli-Rocha, S. Fernandes, M. Einicker-Lamas, and W. A. Zin, “Roles of oxidative stress in signaling and inflammation induced by particulate matter,” Cell Biology and Toxicology, vol. 26, no. 5, pp. 481–498, 2010.
[8]  W. Xue and D. Warshawsky, “Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review,” Toxicology and Applied Pharmacology, vol. 206, no. 1, pp. 73–93, 2005.
[9]  T. M. Penning, S. T. Ohnishi, T. Ohnishi, and R. G. Harvey, “Generation of reactive oxygen species during the enzymatic oxidation of polycyclic aromatic hydrocarbon trans-dihydrodiols catalyzed by dihydrodiol dehydrogenase,” Chemical Research in Toxicology, vol. 9, no. 1, pp. 84–92, 1996.
[10]  B. Binková, D. Vesely, D. Veselá, R. Jelínek, and R. J. ?rám, “Genotoxicity and embryotoxicity of urban air particulate matter collected during winter and summer period in two different districts of the Czech Republic,” Mutation Research, vol. 440, no. 1, pp. 45–58, 1999.
[11]  R. J. Sram, O. Beskid, A. R?ssnerova et al., “Environmental exposure to carcinogenic polycyclic aromatic hydrocarbons. The interpretation of cytogenetic analysis by FISH,” Toxicology Letters, vol. 172, no. 1-2, pp. 12–20, 2007.
[12]  R. J. Sram, O. Beskid, B. Binkova et al., “Chromosomal aberrations in environmentally exposed population in relation to metabolic and DNA repair genes polymorphisms,” Mutation Research, vol. 620, no. 1-2, pp. 22–33, 2007.
[13]  A. Rossnerova, M. Spatova, P. Rossner Jr., I. Solansky, and R. J. Sram, “The impact of air pollution on the levels of micronuclei measured by automated image analysis,” Mutation Research, vol. 669, no. 1-2, pp. 42–47, 2009.
[14]  J. Rubes, R. Rybar, P. Prinosilova et al., “Genetic polymorphisms influence the susceptibility of men to sperm DNA damage associated with exposure to air pollution,” Mutation Research, vol. 683, no. 1-2, pp. 9–15, 2010.
[15]  J. Dejmek, I. Solansky, I. Bene?, J. Lení?ek, and R. J. ?rám, “The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome,” Environmental Health Perspectives, vol. 108, no. 12, pp. 1159–1164, 2000.
[16]  I. Hertz-Picciotto, R. J. Baker, P. S. Yap et al., “Early childhood lower respiratory illness and air pollution,” Environmental Health Perspectives, vol. 115, no. 10, pp. 1510–1518, 2007.
[17]  G. S. Leonardi, D. Houthuijs, B. Nikiforov et al., “Respiratory symptoms, bronchitis and asthma in children of Central and Eastern Europe,” European Respiratory Journal, vol. 20, no. 4, pp. 890–898, 2002.
[18]  J. Kratenova and V. Puklova, “Monitoring of allergy diseases in children in the Ostrava-Karvina region in 2006,” Alergie, supplement 2, pp. 30–35, 2011 (Czech).
[19]  L. B. Bacharier, A. Boner, K. H. Carlsen et al., “Diagnosis and treatment of asthma in childhood: a PRACTALL consensus report,” Allergy, vol. 63, no. 1, pp. 5–34, 2008.
[20]  P. Rossner Jr., V. Svecova, J. Schmuczerova et al., “Analysis of biomarkers in a Czech population exposed to heavy air pollution—part I: bulky DNA adducts,” Mutagenesis, vol. 28, pp. 89–95, 2013.
[21]  B. Binkova, I. Chvatalova, Z. Lnenickova et al., “PAH-DNA adducts in environmentally exposed population in relation to metabolic and DNA repair gene polymorphisms,” Mutation Research, vol. 620, no. 1-2, pp. 49–61, 2007.
[22]  P. Rossner Jr., A. Rossnerova, M. Spatova et al., “Analysis of biomarkers in a Czech population exposed to heavy air pollution—part II: chromosomal aberrations and oxidative stress,” Mutagenesis, vol. 28, pp. 97–106, 2013.
[23]  V. Svecova, J. Topinka, I. Solansky, P. Rossner Jr., and R. J. Sram, “Personal exposure to carcinogenic polycyclic aromatic hydrocarbons in the Czech Republic,” Journal of Exposure Science & Environmental Epidemiology, 2013.
[24]  A. Rossnerova, M. Spatova, C. Schunck, and R. J. Sram, “Automated scoring of lymphocyte micronuclei by the MetaSystems Metafer image cytometry system and its application in studies of human mutagen sensitivity and biodosimetry of genotoxin exposure,” Mutagenesis, vol. 26, no. 1, pp. 169–175, 2011.
[25]  R. J. Sram, “Results of air pollution study—new knowledge 2010,” Ochrana Ovzdu?í, vol. 22, pp. 3–7, 2010 (Czech).
[26]  M. Dostal, A. Pastorkova, S. Rychlik, V. Svecova, E. Rychlikova, and R. J. Sram, “Morbidity of children in Ostrava 2001–2009,” Ochrana Ovzdu?í, vol. 23, pp. 7–12, 2011 (Czech).
[27]  I. Hertz-Picciotto, H. Y. Park, M. Dostal, A. Kocan, T. Trnovec, and R. J. Sram, “Prenatal exposures to persistent and non-persistent organic compounds and effects on immune system development,” Basic and Clinical Pharmacology and Toxicology, vol. 102, no. 2, pp. 146–154, 2008.
[28]  H. Libalova, M. Dostal, and R. J. Sram, “Study of gene expression in asthmatic children living in localities with different extent of air pollution,” Ochrana Ovzdu?í, vol. 23, pp. 13–17, 2011 (Czech).
[29]  P. S. Gao, K. Shimizu, A. V. Grant et al., “Polymorphisms in the sialic acid-binding immunoglobulin-like lectin-8 (Siglec-8) gene are associated with susceptibility to asthma,” European Journal of Human Genetics, vol. 18, no. 6, pp. 713–719, 2010.
[30]  A. Rossnerova, E. Tulupova, N. Tabashidze et al., “Factors affecting the 27K DNA methylation pattern in asthmatic and healthy children from locations with various environments,” Mutation Research, vol. 741-742, pp. 18–26, 2013.
[31]  R. J. Sram, B. Binkova, M. Dostal et al., “Health impact of air pollution to children,” International Journal of Hygiene and Environmental Health, 2013.
[32]  A. Rossnerova, M. Spatova, P. Rossner Jr., Z. Novakova, I. Solansky, and R. J. Sram, “Factors affecting the frequency of micronuclei in asthmatic and healthy children from Ostrava,” Mutation Research, vol. 708, no. 1-2, pp. 44–49, 2011.
[33]  P. Rossner Jr., K. Uhlirova, O. Beskid, A. Rossnerova, V. Svecova, and R. J. Sram, “Expression of XRCC5 in peripheral blood lymphocytes is upregulated in subjects from a heavily polluted region in the Czech Republic,” Mutation Research, vol. 713, no. 1-2, pp. 76–82, 2011.
[34]  S. P. Adams, G. M. Laws, R. D. Storer, J. G. DeLuca, and W. W. Nichols, “Detection of DNA damage induced by human carcinogens in acellular assays: potential application for determining genotoxic mechanisms,” Mutation Research, vol. 368, no. 3-4, pp. 235–248, 1996.
[35]  M. V. Reddy, G. R. Blackburn, C. A. Schreiner, and C. R. Mackerer, “Correlation of mutagenic potencies of various petroleum oils and oil coal tar mixtures with DNA adduct levels in vitro,” Mutation Research, vol. 378, no. 1-2, pp. 89–95, 1997.
[36]  W. A. Smith, J. M. Arif, and R. C. Gupta, “Effect of cancer chemopreventive agents on microsome-mediated DNA adduction of the breast carcinogen dibenzo[a,l]pyrene,” Mutation Research, vol. 412, no. 3, pp. 307–314, 1998.
[37]  S. K. Pohjola, M. Lappi, M. Honkanen, and K. Savela, “Comparison of mutagenicity and calf thymus DNA adducts formed by the particulate and semivolatile fractions of vehicle exhausts,” Environmental and Molecular Mutagenesis, vol. 42, no. 1, pp. 26–36, 2003.
[38]  J. Topinka, P. Rossner Jr., A. Milcova, J. Schmuczerova, V. Svecova, and R. J. Sram, “DNA adducts and oxidative DNA damage induced by organic extracts from PM2.5 in an acellular assay,” Toxicology Letters, vol. 202, no. 3, pp. 186–192, 2011.
[39]  C. A. Pope III, M. Ezzati, and D. W. Dockery, “Fine-particulate air pollution and life expectancy in the United States,” The New England Journal of Medicine, vol. 360, no. 4, pp. 376–386, 2009.
[40]  A. W. Correia, C. A. Pope III, D. W. Dockery, Y. Wang, M. Ezzati, and F. Dominici, “Effect of air pollution control on life expectancy in the United States: an analysis of 545 U.S. Counties for the period from 2000 to 2007,” Epidemiology, vol. 24, pp. 23–31, 2013.
[41]  F. Kotesovec, J. Skorkovsky, and J. Brynda, “The course of long-term mortality in the Czech Republic and in selected regions in the period of 1982–2007,” Ochrana Ovzdu?í, vol. 21, pp. 23–26, 2009 (Czech).
[42]  J. Skorkovsky, F. Kotesovec, V. Svecova, J. Brynda, E. Rychlikova, and R. J. Sram, “The course of long-term mortality in two localities in Moravian-Silesian region with different levels of air pollution,” Ochrana Ovzdu?í, vol. 22, pp. 28–34, 2010 (Czech).
[43]  J. Skorkovsky, E. Rychlikova, F. Kotesovec, and R. J. Sram, “Daily mortality in three regions with different PM10 concentrations in ambient air—Czech Republic,” Ochrana Ovzdu?í, vol. 23, pp. 23–29, 2011 (Czech).
[44]  F. Perera, W. Y. Tang, J. Herbstman et al., “Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma,” PLoS One, vol. 4, no. 2, Article ID e4488, 2009.
[45]  F. Perera, D. Tang, R. Whyatt, S. A. Lederman, and W. Jedrychowski, “DNA damage from polycyclic aromatic hydrocarbons measured by benzo[a]pyrene-DNA adducts in mothers and newborns from Northern Manhattan, the World Trade Center Area, Poland, and China,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 3, pp. 709–714, 2005.
[46]  J. Topinka, B. Binkova, G. Mrackova et al., “Influence of GSTM1 and NAT2 genotypes on placental DNA adducts in an environmentally exposed population,” Environmental and Molecular Mutagenesis, vol. 30, no. 2, pp. 184–195, 1997.
[47]  H. Choi, V. Rauh, R. Garfinkel, Y. Tu, and F. P. Perera, “Prenatal exposure to airborne polycyclic aromatic hydrocarbons and risk of intrauterine growth restriction,” Environmental Health Perspectives, vol. 116, no. 5, pp. 658–665, 2008.
[48]  F. P. Perera, Z. Li, R. Whyatt et al., “Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years,” Pediatrics, vol. 124, no. 2, pp. e195–e202, 2009.
[49]  H. Choi, L. Wang, X. Lin, J. D. Spengler, and F. P. Perera, “Fetal window of vulnerability to airborne polycyclic aromatic hydrocarbons on proportional intrauterine growth restriction,” PloS One, vol. 7, Article ID e35464, 2012.
[50]  H. Choi, F. Perera, A. Pac et al., “Estimating individual-level exposure to airborne polycyclic aromatic hydrocarbons throughout the gestational period based on personal, indoor, and outdoor monitoring,” Environmental Health Perspectives, vol. 116, no. 11, pp. 1509–1518, 2008.
[51]  G. C. S. Smith, “First trimester origins of fetal growth impairment,” Seminars in Perinatology, vol. 28, no. 1, pp. 41–50, 2004.
[52]  L. Neufeld, D. L. Pelletier, and J. D. Haas, “The timing hypothesis and body proportionality of the intra-uterine growth retarded infant,” American Journal of Human Biology, vol. 11, no. 5, pp. 638–646, 1999.
[53]  S. Milani, A. Bossi, E. Bertino et al., “Differences in size at birth are determined by differences in growth velocity during early prenatal life,” Pediatric Research, vol. 57, no. 2, pp. 205–210, 2005.
[54]  A. van Wassenaer, “Neurodevelopmental consequences of being born SGA,” Pediatric Endocrinology Reviews, vol. 2, no. 3, pp. 372–377, 2005.
[55]  J. Lipsett, M. Tamblyn, K. Madigan et al., “Restricted fetal growth and lung development: a morphometric analysis of pulmonary structure,” Pediatric Pulmonology, vol. 41, no. 12, pp. 1138–1145, 2006.
[56]  L. Nepomnyaschy and N. E. Reichman, “Low birthweight and asthma among young urban children,” American Journal of Public Health, vol. 96, no. 9, pp. 1604–1610, 2006.
[57]  D. J. P. Barker, “Adult consequences of fetal growth restriction,” Clinical Obstetrics and Gynecology, vol. 49, no. 2, pp. 270–283, 2006.
[58]  M. S. Martin-Gronert and S. E. Ozanne, “Experimental IUGR and later diabetes,” Journal of Internal Medicine, vol. 261, no. 5, pp. 437–452, 2007.
[59]  R. J. Sram, B. Binková, J. Dejmek, I. Chvatalova, I. Solansky, and J. Topinka, “Association of DNA adducts and genotypes with birth weight,” Mutation Research, vol. 608, no. 2, pp. 121–128, 2006.
[60]  R. L. Miller, R. Garfinkel, M. Horton et al., “Polycyclic aromatic hydrocarbons, environmental tobacco smoke, and respiratory symptoms in an inner-city birth cohort,” Chest, vol. 126, no. 4, pp. 1071–1078, 2004.
[61]  W. Jedrychowski, A. Galas, A. Pac et al., “Prenatal ambient air exposure to polycyclic aromatic hydrocarbons and the occurrence of respiratory symptoms over the first year of life,” European Journal of Epidemiology, vol. 20, no. 9, pp. 775–782, 2005.
[62]  C. L. Yauk, “Advances in the application of germline tandem repeat instability for in situ monitoring,” Mutation Research, vol. 566, no. 2, pp. 169–182, 2004.
[63]  C. M. Somers, C. L. Yauk, P. A. White, C. L. J. Parfett, and J. S. Quinn, “Air pollution induces heritable DNA mutations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 25, pp. 15904–15907, 2002.
[64]  C. M. Somers and D. N. Cooper, “Air pollution and mutations in the germline: are humans at risk?” Human Genetics, vol. 125, no. 2, pp. 119–130, 2009.
[65]  C. M. Somers, “Ambient air pollution exposure and damage to male gametes: human studies and in situ ‘sentinel’ animal experiments,” Systems Biology in Reproductive Medicine, vol. 57, no. 1-2, pp. 63–71, 2011.
[66]  D. M. DeMarini, “Declaring the existence of human germ-cell mutagens,” Environmental and Molecular Mutagenesis, vol. 53, pp. 166–172, 2012.
[67]  J. Ostatnicka and L. Matouskova, Eds., Air Pollution in the Czech Republic in 2011, Czech Hydrometeorological Institute, Prague, Czech Republic, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133