全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Availability of Adequately Iodized Salt at Household Level and Associated Factors in Gondar Town, Northwest Ethiopia

DOI: 10.1155/2013/160582

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Iodine deficiency has serious effects on body growth and mental development. This study assessed availability of adequately iodized salt at household level and associated factors in Gondar town, northwest Ethiopia. Methods. Community based cross-sectional study was carried out among households in Gondar town during August 15–25, 2012. Multistage sampling technique was used. Data were collected using a pretested and structured questionnaire by a face-to-face interview technique. Bivariate and multivariate analyses were performed to check associations and control confounding. Results. A total of 810 participants were participated. The availability of adequately iodized salt (≥15 parts per million) in the study area was 28.9%. Multivariate analysis showed that using packed salt (AOR (95% CI) = 9.75 (5.74, 16.56)), not exposing salt to sunlight (AOR (95% CI) = 7.26 (3.73, 14.11)), shorter storage of salt at household (AOR (95% CI) = 3.604 (1.402, 9.267)) and good knowledge of participants about iodized salt (AOR (95% CI) = 1.94 (1.23, 3.05)) were associated with availability of adequately iodized salt at household level. Conclusions. Availability of adequately iodized salt at household level was very low. Hence, households should be sensitized about importance of iodized salt and its proper handling at the household level. 1. Background Iodine is essential in small amounts for normal physiologic function. It is a critical component of thyroid hormones, which are necessary for controlling metabolic rate, growth, and development of body structures, as well as neuronal function and development. The World Health Organization (WHO) recommended intake (population requirement) of iodine is 150?μg/day for adults and adolescents 13 years of age and older, 200?μg/day for women during pregnancy and lactation, 120?μg/day for children 6–12 years of age, and 90?μg/day for children 0–59 months of age [1]. Healthy humans require iodine, an essential component of the thyroid hormones, thyroxin, and triiodothyronine. Failure to have adequate iodine leads to insufficient production of these hormones, which affect many different parts of the body, particularly muscle, heart, liver, kidney, thyroid gland, and the developing brain. Inadequate hormone production adversely affects these tissues resulting in the disease states known collectively as iodine deficiency disorders (IDD). These include mental retardation, defects in development of the nervous system, goiter, physical sluggishness, growth retardation, reproductive failure, increased childhood mortality, and

References

[1]  WHO, Iodine Status Worldwide, WHO Global Database on Iodine Deficiency, World Health Organization Department of Nutrition for Health and Development, Geneva, Switzerland, 2004.
[2]  M. Venkatesh and T. John, Salt Iodization for the Elimination of Iodine Deficiency, International Council for Control of Iodine Deficiency Disorders, Amsterdam, The Netherlands, 1st edition, 1995.
[3]  C. Wisnu, “Determination of iodine species content in iodized salt and foodstuff during cooking,” International Food Research Journal, vol. 15, no. 3, pp. 325–330, 2008.
[4]  O. E. Okosieme, “Impact of iodination on thyroid pathology in Africa,” Journal of the Royal Society of Medicine, vol. 99, no. 8, pp. 396–401, 2006.
[5]  G. F. Maberly, D. P. Haxton, and F. van der Haar, “Iodine deficiency: consequences and progress toward elimination,” Food and Nutrition Bulletin, vol. 24, no. 4, pp. S91–S109, 2003.
[6]  A. J. Seal, P. I. Creeke, D. Gnat, F. Abdalla, and Z. Mirghani, “Excess dietary iodine intake in long-term African refugees,” Public Health Nutrition, vol. 9, no. 1, pp. 35–39, 2006.
[7]  L. Takele, T. Belachew, and T. Bekele, “Iodine concentration in salt at household and retail shop levels in Shebe town, South West Ethiopia,” East African Medical Journal, vol. 80, no. 10, pp. 532–539, 2003.
[8]  CSA and ICF International, Ethiopia Demographic and Health Survey 2011, Central Statistical Agency and ICF International, Calverton, Md, USA, 2012.
[9]  F. Population Census Commision, Summary and Statistical Report of the 2007 Population and Housing Census: Population Size By Age and Sex, Addis Abeba, Ethiopia, 2008.
[10]  UNICEF, ICCID, PAMM, and WHO, Monitoring Universal Salt Iodization Program, PAMM/ICCIDD, Ottawa, Canada, 1995.
[11]  FMOH, National Guideline for Control and Prevention of Micronutrient Deficiencies, Edited by F. H. Department, Federal Ministry of Health, Addis Ababa, Ethiopia, 2010.
[12]  L. Bohac and D. Gulati, “Integrating small salt producers in Rajasthan into India's universal salt iodization strategy,” IDD News Letter, vol. 33, pp. 4–6, 2009.
[13]  P. L. Jooste, M. J. Weight, and C. J. Lombard, “Iodine concentration in household salt in South Africa,” Bulletin of the World Health Organization, vol. 79, no. 6, pp. 534–540, 2001.
[14]  S. Izzeldin, Latest Status of Iodine Nutrition, World Health Organization Regional Office for the Eastern Mediterranean, Permanent Advisory Committee in Nutrition, 2010.
[15]  G. Goindi, M. Karmarkar, U. Kapil, and J. Jaganathan, “Estimation of losses of iodine during different cooking procedures,” Asia Pacific Journal of Clinical Nutrition, vol. 4, pp. 225–227, 1995.
[16]  W. Davidson, M. Finlayson, and C. Watson, “Iodine deficiency disorder,” The Journal of Agricultural Science, vol. 31, p. 148, 2005.
[17]  S. Ebrahim and N. Muhammed, “Consumption of iodized salt among households of Basra city, South Iraq,” Eastern Mediterranean Health Journal, vol. 18, no. 9, pp. 980–984, 2012.
[18]  U. Kapil, S. Prakash, and D. Nayar, “Study of some factors influencing losses of iodine from iodised salt,” Indian Journal of Maternal and Child Health, vol. 9, no. 1, pp. 46–47, 1998.
[19]  F. C. Kelly, “Studies on the stability of iodine compounds in iodized salt,” Bulletin of the World Health Organization, vol. 9, no. 2, pp. 217–230, 1953.
[20]  K. Waszkowiak and K. Szymandera, “Effect of storage conditions on potassium iodide stability in iodised table salt and collagen preparations,” International Journal of Food Science & Technology, vol. 43, no. 5, pp. 895–899, 2008.
[21]  L. L. Diosady, “Stability of iodine in iodized salt used for correction of iodine deficiency disorders,” Food and Nutrition Bulletin, vol. 2, pp. 240–250, 2004.
[22]  B. Strange, M. Joseph, S. Kaushik, S. Dey, S. Dutt, and R. Jha, “Reaching the rural poor in India with iodized salt: the Micronutrient Initiative's Iodized Salt Coverage Study 2010,” IDD News Letter, vol. 39, pp. 6–8, 2011.
[23]  C. Buxton and B. Baguune, “Knowledge and practices of people in Bia District, Ghana, with regard to iodine deficiency disorders and intake of iodized salt,” Archives of Public Health, vol. 70, pp. 70–75, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133