全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adverse Health Effects Associated with Increased Activity at Kīlauea Volcano: A Repeated Population-Based Survey

DOI: 10.1155/2013/475962

Full-Text   Cite this paper   Add to My Lib

Abstract:

Eruptive activity at the Kīlauea volcano (Hawai`i, USA) has increased since 2008 resulting in volcanic air pollution (vog) at levels exceeding the national air quality standard for sulfur dioxide. Previous investigations during lower vog levels found adverse cardiorespiratory effects in the residents. The purpose of this 2012 survey was to reassess and compare the impact of the increased volcanic activity on population health. Prevalence of cardiorespiratory signs, symptoms, and diseases was estimated in vog exposed and unexposed communities, and descriptions of perceived health and environmental effects were collected door-to-door. Vog exposure was significantly associated with increased odds of self-reported cough, phlegm, rhinorrhea, sore/dry throat, shortness of breath, sinus congestion, continual wheezing, eye and skin irritation, and diagnosed hypertension. Field measurements identified significantly higher average systolic and diastolic blood pressures ( ) and lower blood oxygen saturation ( ). Half of the participants perceived that Kīlauea’s intensified eruption had negatively affected their health with reports of financial impacts from degradation of agriculture and livestock. Relatively stronger magnitudes of health effects were associated with the higher exposure to vog. Public concerns remain about attributed effects of the ongoing eruption. Enhanced public health efforts are recommended at Kīlauea and other degassing volcanoes worldwide. 1. Introduction Volcanic emissions have detrimental impacts on the environment and pose numerous hazards to humans. Explosive eruptions have associated mortality and adverse effects from ash fall, whereas effusive eruptions create insidious health risks from the passive degassing of emissions into the lower troposphere [1]. An estimated 9% of the world’s population live ≤100?km of a historically active volcano [2]. Therefore, it is imperative to gain an understanding of human-environmental interactions, identify health effects, and develop public health interventions for vulnerable populations exposed to volcanic air pollution. Effusive eruption at the Kīlauea volcano on the island of Hawai`i has persisted since 1986 from various vents on the volcano’s east rift zone. Emissions are predominantly water vapor mixed with carbon dioxide and sulfur dioxide (SO2), finely-sized sulfurous particles (PM2.5; primarily sulfuric acid aerosol), and trace gases of hydrogen sulfide, hydrogen fluoride, mercury, other halogens, and trace metals [3, 4]. As SO2 gas oxidizes to sulfate particles through various chemical and

References

[1]  C. Oppenheimer, Eruptions That Shook the World, Cambridge University Press, Cambridge, UK, 2011.
[2]  C. Small and T. Naumann, “The global distribution of human population and recent volcanism,” Environmental Hazards, vol. 3, no. 3-4, pp. 93–109, 2001.
[3]  T. A. Mather, M. L. I. Witt, D. M. Pyle et al., “Halogens and trace metal emissions from the ongoing 2008 summit eruption of Kīlauea volcano, Hawai`i,” Geochimica et Cosmochimica Acta, vol. 83, pp. 292–323, 2012.
[4]  A. J. Sutton, T. Elias, J. W. Hendley II, and P. H. Stauffer, “Volcanic air pollution-A hazard in Hawaii,” U.S. Geological Survey Fact Sheet 169-97, 2000.
[5]  WHO, WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide, Global Update 2005, Summary of Risk Assessment, World Health Organization, Geneva, Switzerland, 2006.
[6]  United States Environmental Protection Agency, “National Ambient Air Quality Standards, Sulfur dioxide,” 2010, http://www.epa.gov/air/criteria.html.
[7]  B. Yager, “HOVE vog warning was issued,” Hawaii Tribune-Herald, 2008, http://www.hawaiitribuneherald.com/articles/2008/04/17/local_news/local03.prt.
[8]  P. Delmelle, “Environmental impacts of tropospheric volcanic gas plumes,” Geological Society Special Publication, vol. 213, pp. 381–399, 2003.
[9]  M. Durand and J. Grattan, “Effects of volcanic air pollution on health,” The Lancet, vol. 357, no. 9251, p. 164, 2001.
[10]  A. Ishigami, Y. Kikuchi, S. Iwasawa et al., “Volcanic sulfur dioxide and acute respiratory symptoms on Miyakejima island,” Occupational and Environmental Medicine, vol. 65, no. 10, pp. 701–707, 2008.
[11]  R. Stephenson, G. Burr, M. Kawamoto, and B. Hills, “Exposures to volcanic emissions from the Hawaiian volcanoes: a NIOSH health hazard evaluation,” Applied Occupational and Environmental Hygiene, vol. 6, no. 6, pp. 408–410, 1991.
[12]  B. M. Longo, A. Rossignol, and J. B. Green, “Cardiorespiratory health effects associated with sulphurous volcanic air pollution,” Public Health, vol. 122, no. 8, pp. 809–820, 2008.
[13]  B. M. Longo, “The Kilauea Volcano adult health study,” Nursing Research, vol. 58, no. 1, pp. 23–31, 2009.
[14]  B. M. Longo, W. Yang, J. B. Green, F. L. Crosby, and V. L. Crosby, “Acute health effects associated with exposure to volcanic air pollution (VOG) from increased activity at Kilauea volcano in 2008,” Journal of Toxicology and Environmental Health A, vol. 73, no. 20, pp. 1370–1381, 2010.
[15]  L. Rosen, “Hospital Surveillance for Vog Report,” State of Hawaii Department of Health, 2009, http://hawaii.gov/health/about/reports/Hospital_Surveillance_Vog_Report.pdf.
[16]  B. M. Longo, W. Yang, J. B. Green, A. A. Longo, M. Harris, and R. Bibilone, “An indoor air quality assessment for vulnerable populations exposed to volcanic vog from Kilauea Volcano,” Family and Community Health, vol. 33, no. 1, pp. 21–31, 2010.
[17]  “NIH Heart, Lung, and Blood Institute,” http://www.nhlbi.nih.gov/index.htm.
[18]  American Public Health Association, “Environmental health principles & recommendations for public health nursing,” 2005, http://www.apha.org/membergroups/newsletters/sectionnewsletters/public_nur/winter06/2550.htm.
[19]  D. Lucky, B. Turner, M. Hall, S. Lefaver, and A. de Werk, “Blood pressure screenings through community nursing health fairs: motivating individuals to seek health care follow-up,” Journal of Community Health Nursing, vol. 28, no. 3, pp. 119–129, 2011.
[20]  Hawaii Department of Health, “Hawaii Asthma Initiative,” http://hawaii.gov/health/family-child-health/chronic-disease/asthma/coalition.html.
[21]  “United States Geological Survey Hawaiian Volcano Observatory Daily Updates for Kilauea Volcano,” 2012, http://volcano.wr.usgs.gov/kilaueastatus.php.
[22]  Hawai`i State Department of Health, “Public notification: Air pollutant exceedence on Big Island, Clean Air Branch continual report,” 2012, http://health.hawaii.gov/cab/notification-of-exceedance-of-a-national-ambient-air-quality-standard/.
[23]  United States Decennial Census, 2010, http://www.census.gov/.
[24]  “United States Department of Health and Human Services, NHANES, 1999–2000. Hyattsville, Maryland, National Center for Health Statistics, Centers for Disease Control and Prevention,” 2003, http://www.cdc.gov/nchs/about/major/nhanes/nhanes99-02.htm.
[25]  B. G. Ferris, “Epidemiology standardization project (American Thoracic Society),” American Review of Respiratory Disease, vol. 118, no. 6, pp. 1–120, 1978.
[26]  United States National Institute of Health, Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC7), NIH publication 04-5230, 2004.
[27]  Agency for Toxic Substances & Disease Registry, Toxicological Profile for Sulfur Dioxide, CAS 7446-09-5, US Department of Health and Human Services, Atlanta, Ga, USA, 1998.
[28]  D. O. Johns and W. S. Linn, “A review of controlled human SO2 exposure studies contributing to the US EPA integrated science assessment for sulfur oxides,” Inhalation Toxicology, vol. 23, no. 1, pp. 33–43, 2011.
[29]  J. G. Camara and J. K. Lagunzad, “Ocular findings in volcanic fog induced conjunctivitis,” Hawaii Medical Journal, vol. 70, no. 12, pp. 262–265, 2011.
[30]  WHO, Sulfur Oxides and Suspended Particulate Matter, Environmental Health Criteria 8, World Health Organization, Geneva, Switzerland, 1979.
[31]  R. D. Brook, S. Rajagopalan, C. A. Pope et al., “Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association,” Circulation, vol. 121, no. 21, pp. 2331–2378, 2010.
[32]  D. L. DeMeo, A. Zanobetti, A. A. Litonjua, B. A. Coull, J. Schwartz, and D. R. Gold, “Ambient air pollution and oxygen saturation,” American Journal of Respiratory and Critical Care Medicine, vol. 170, no. 4, pp. 383–387, 2004.
[33]  H. C. R. State of Hawaii, House of Representatives, 23rd Legislature, House Concurrent Resolution H.C.R. No. 141, H.D. 1, 2005, http://www.capitol.hawaii.gov/session2005/bills/hcr141_.htm.
[34]  T. Simkin and L. Siebert, “Global Volcanism FAQs,” Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-5, 2002, http://www.volcano.si.edu/education/questions/.
[35]  “The International Volcanic Health Hazard Network,” http://www.ivhhn.org/.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133