Background. Pennsylvania, with thousands of abandoned coal mines and miles of streams polluted with acid mine drainage, has the largest domestic coal mining burden contributing to deterioration of communities. Objectives. To evaluate contextual aspects by examining associations between coal abandoned mine lands (AML) and community measures of socioeconomic deprivation, social disorganization, and physical disorder. Methods. AML exposure data from the Reclaimed Abandoned Mine Land Inventory System were used to create density, diversity, accessibility, and clustering metrics. The three community context outcome measures were comprised of 14 census variables. In community-level analyses, 10 AML variables were evaluated separately with each dimension of community context, adjusting for covariates, in communities with and without abandoned mines. Results. We observed consistent associations between higher AML burden and worse socioeconomic deprivation, negative relations with social disorganization, but no statistically significant associations with physical disorder. Six of 10 AML variables were associated with socioeconomic deprivation, many consistently exhibiting exposure-effect patterns of worse deprivation with greater AML. Conclusions. Higher AML was associated with higher socioeconomic deprivation. These results can help prioritize the use of Surface Mining Control and Reclamation Act funds and inform decisions regarding Marcellus shale drilling to prevent analogous environmental degradation and public health impacts. 1. Introduction Pennsylvania has long been a witness to the negative impacts of energy fuel extraction industries. The quest for fossil fuels began in 1761 with coal mining, followed by petroleum drilling in 1859, and now a growing and controversial interest in natural gas drilling from shale [1]. An extensive history of coal mining has left the state with the worst legacy of scarred and contaminated landscapes in the USA [2, 3]. These vast expanses of coal abandoned mine lands (AMLs) encompass terrestrial or aquatic sites of ore or mineral extraction, beneficiation, or processing, and waste deposit locations [2]. Although the Surface Mining Control and Reclamation Act (SMCRA) of 1977 established a fund to reclaim coal mines abandoned prior to the statute, relatively little scientific evidence was used for priority classifications of sites based on public health protection [4]. The settings in which people live and work influence health [5, 6]. Characteristics of communities that are external to the individual have important
References
[1]
C. W. Schmidt, “Blind rush? Shale gas boom proceeds amid human health questions,” Environmental Health Perspectives, vol. 119, no. 8, pp. A350–A353, 2011.
[2]
U.S. Bureau of Land Management, “Abandoned Mine Lands Portal,” 2011, http://www.abandonedmines.gov/index.html.
[3]
R. E. Hughes and M. Hewitt, Reclaimed Abandoned Mine Land Inventory System, 2008, Shavertown, Pa, USA.
[4]
U.S. Congress Editor, “Surface mining control and reclamation act title 30,” USC Section 1234-1328, U.S. Government Printing Office, Washington, DC, USA, 1997.
[5]
S. M. Marmot, “The social environment and health,” Clinical Medicine, vol. 5, no. 3, pp. 244–248, 2005.
[6]
H. Frumkin, “The Measure of Place,” American Journal of Preventive Medicine, vol. 31, no. 6, pp. 530–532, 2006.
[7]
A. R. Hughes, F. Gillies, A. F. Kirk, N. Mutrie, W. S. Hillis, and P. D. MacIntyre, “Exercise consultation improves short-term adherence to exercise during phase IV cardiac rehabilitation: a randomized, controlled trial,” Journal of Cardiopulmonary Rehabilitation, vol. 22, no. 6, pp. 421–425, 2002.
[8]
K. E. Pickett and M. Pearl, “Multilevel analyses of neighbourhood socioeconomic context and health outcomes: a critical review,” Journal of Epidemiology and Community Health, vol. 55, no. 2, pp. 111–122, 2001.
[9]
C. K. Nordstrom, A. V. Diez Roux, S. A. Jackson, and J. M. Gardin, “The association of personal and neighborhood socioeconomic indicators with subclinical cardiovascular disease in an elderly cohort. The cardiovascular health study,” Social Science and Medicine, vol. 59, no. 10, pp. 2139–2147, 2004.
[10]
C. Cubbin, K. Sundquist, H. Ahlen, S. E. Johansson, M. A. Winkleby, and J. Sundquist, “Neighborhood deprivation and cardiovascular disease risk factors: protective and harmful effects,” Scandinavian Journal of Public Health, vol. 34, no. 3, pp. 228–237, 2006.
[11]
J. D. Morenoff, J. S. House, B. B. Hansen, D. R. Williams, G. A. Kaplan, and H. E. Hunte, “Understanding social disparities in hypertension prevalence, awareness, treatment, and control: the role of neighborhood context,” Social Science and Medicine, vol. 65, no. 9, pp. 1853–1866, 2007.
[12]
T. Augustin, T. A. Glass, B. D. James, and B. S. Schwartz, “Neighborhood psychosocial hazards and cardiovascular disease: the Baltimore memory study,” American Journal of Public Health, vol. 98, no. 9, pp. 1664–1670, 2008.
[13]
S. S. Merkin, A. V. Diez Roux, J. Coresh, L. F. Fried, S. A. Jackson, and N. R. Powe, “Individual and neighborhood socioeconomic status and progressive chronic kidney disease in an elderly population: the Cardiovascular Health study,” Social Science and Medicine, vol. 65, no. 4, pp. 809–821, 2007.
[14]
D. A. Shoham, S. Vupputuri, A. V. Diez Roux et al., “Kidney disease in life-course socioeconomic context: the Atherosclerosis Risk in Communities (ARIC) study,” American Journal of Kidney Diseases, vol. 49, no. 2, pp. 217–226, 2007.
[15]
P. B. English, M. Kharrazi, S. Davies, R. Scalf, L. Waller, and R. Neutra, “Changes in the spatial pattern of low birth weight in a southern California county: the role of individual and neighborhood level factors,” Social Science and Medicine, vol. 56, no. 10, pp. 2073–2088, 2003.
[16]
T. A. Farley, K. Mason, J. Rice, J. D. Habel, R. Scribner, and D. A. Cohen, “The relationship between the neighbourhood environment and adverse birth outcomes,” Paediatric and Perinatal Epidemiology, vol. 20, no. 3, pp. 188–200, 2006.
[17]
T. Leventhal and J. Brooks-Gunn, “Moving to opportunity: an experimental study of neighborhood effects on mental health,” American Journal of Public Health, vol. 93, no. 9, pp. 1576–1582, 2003.
[18]
M. Stafford and M. Marmot, “Neighbourhood deprivation and health: does it affect us all equally?” International Journal of Epidemiology, vol. 32, no. 3, pp. 357–366, 2003.
[19]
C. F. Hybels, D. G. Blazer, C. F. Pieper et al., “Sociodemographic characteristics of the neighborhood and depressive symptoms in older adults: using multilevel modeling in geriatric psychiatry,” American Journal of Geriatric Psychiatry, vol. 14, no. 6, pp. 498–506, 2006.
[20]
M. Elliott, “The stress process in neighborhood context,” Health and Place, vol. 6, no. 4, pp. 287–299, 2000.
[21]
A. Steptoe and P. J. Feldman, “Neighborhood problems as sources of chronic stress: development of a measure of neighborhood problems, and associations with socioeconomic status and health,” Annals of Behavioral Medicine, vol. 23, no. 3, pp. 177–185, 2001.
[22]
M. Hendryx, “Mortality from heart, respiratory, and kidney disease in coal mining areas of Appalachia,” International Archives of Occupational and Environmental Health, vol. 82, no. 2, pp. 243–249, 2009.
[23]
M. Hendryx and M. M. Ahern, “Mortality in appalachian coal mining regions: the value of statistical life lost,” Public Health Reports, vol. 124, no. 4, pp. 541–550, 2009.
[24]
M. Hendryx, M. M. Ahern, and T. R. Nurkiewicz, “Hospitalization patterns associated with appalachian coal mining,” Journal of Toxicology and Environmental Health A, vol. 70, no. 24, pp. 2064–2070, 2007.
[25]
M. Hendryx, K. O'Donnell, and K. Horn, “Lung cancer mortality is elevated in coal-mining areas of Appalachia,” Lung Cancer, vol. 62, no. 1, pp. 1–7, 2008.
[26]
W. B. Neser, H. A. Tyroler, and J. C. Cassel, “Social disorganization and stroke mortality in the black population of North Carolina,” American Journal of Epidemiology, vol. 93, no. 3, pp. 166–175, 1971.
[27]
V. Carstairs, “Deprivation indices: their interpretation and use in relation to health,” Journal of Epidemiology and Community Health, vol. 49, supplement 2, pp. S3–S8, 1995.
[28]
M. Malmstrom, J. Sundquist, and S. E. Johansson, “Neighborhood environment and self-reported health status: a multilevel analysis,” American Journal of Public Health, vol. 89, no. 8, pp. 1181–1186, 1999.
[29]
D. Cohen, S. Spear, R. Scribner, P. Kissinger, K. Mason, and J. Wildgen, “‘Broken windows’ and the risk of gonorrhea,” American Journal of Public Health, vol. 90, no. 2, pp. 230–236, 2000.
[30]
C. E. Ross and J. Mirowsky, “Neighborhood disadvantage, disorder, and health,” Journal of Health and Social Behavior, vol. 42, no. 3, pp. 258–276, 2001.
[31]
M. K. Stjarne, J. Fritzell, A. P. de Leon, and J. Hallqvist, “Neighborhood socioeconomic context, individual income and myocardial infarction,” Epidemiology, vol. 17, no. 1, pp. 14–23, 2006.
[32]
J. P. Stimpson, A. C. Nash, H. Ju, and K. Eschbach, “Neighborhood deprivation is associated with lower levels of serum carotenoids among adults participating in the Third National Health and Nutrition Examination Survey,” Journal of the American Dietetic Association, vol. 107, no. 11, pp. 1895–1902, 2007.
[33]
R. C. Brownson, C. M. Hoehner, K. Day, A. Forsyth, and J. F. Sallis, “Measuring the built environment for physical activity: state of the science,” American Journal of Preventive Medicine, vol. 36, supplement 4, pp. S99–S123.e12, 2009.
[34]
J. Feng, T. A. Glass, F. C. Curriero, W. F. Stewart, and B. S. Schwartz, “The built environment and obesity: a systematic review of the epidemiologic evidence,” Health and Place, vol. 16, no. 2, pp. 175–190, 2010.
[35]
R. Cervero and K. Kockelman, “Travel demand and the 3Ds: density, diversity, and design,” Transportation Research D, vol. 2, no. 3, pp. 199–219, 1997.
[36]
P. Townsend, “Deprivation,” Journal of Social Policy, vol. 16, no. 2, pp. 125–146, 1987.
[37]
R. J. Sampson and W. B. Groves, “Community structure and crime: testing social-disorganization theory,” American Journal of Sociology, vol. 94, no. 4, pp. 774–802, 1989.
[38]
I. H. Yen and S. L. Syme, “The social environment and health: a discussion of the epidemiologic literature,” Annual Review of Public Health, vol. 20, pp. 287–308, 1999.
[39]
D. W. Osgood and J. M. Chambers, “Social disorganization outside the metropolis: an analysis of rural youth violence,” Criminology, vol. 38, no. 1, pp. 81–114, 2000.
[40]
I. H. Yen, Y. L. Michael, and L. Perdue, “Neighborhood environment in studies of health of older adults: a systematic review,” American Journal of Preventive Medicine, vol. 37, no. 5, pp. 455–463, 2009.
[41]
R. G. Netemeyer, W. O. Bearden, and S. Sharma, Scaling Procedures: Issues and Applications, Sage Publications, Thousand Oaks, Calif, USA, 2003.
[42]
S. Selvin, I. J. Schulman, and D. W. Merrill, “Interpoint squared distance as a measure of spatial clustering,” Social Science and Medicine, vol. 36, no. 8, pp. 1011–1016, 1993.
[43]
S. E. Taylor, R. L. Repetti, and T. Seeman, “Health psychology: what is an unhealthy environment and how does it get under the skin?” Annual Review of Psychology, vol. 48, pp. 411–447, 1997.
[44]
S. Macintyre and A. Ellaway, “Neighborhoods and health: an overview,” in Neighborhoods and Health, I. Kawachi and L. F. Berkman, Eds., pp. 20–42, Oxford University Press, New York, NY, USA, 2003.
[45]
J. T. Hart, “The health of coal mining communities.,” Journal of the Royal College of General Practitioners, vol. 21, no. 110, pp. 517–528, 1971.
[46]
M. R. I. Soliman, C. T. Derosa, H. W. Mielke, and K. Bota, “Hazardous wastes, hazardous materials and environmental health inequity,” Toxicology and Industrial Health, vol. 9, no. 5, pp. 901–912, 1993.
[47]
S. Saegert and G. Winkel, “Crime, social capital, and community participation,” American Journal of Community Psychology, vol. 34, no. 3-4, pp. 219–233, 2004.
[48]
D. D. Perkins and R. B. Taylor, “Ecological assessments of community disorder: their relationship to fear of crime and theoretical implications,” American Journal of Community Psychology, vol. 24, no. 1, pp. 63–107, 1996.
[49]
I. Kawachi, B. P. Kennedy, and R. G. Wilkinson, “Crime: social disorganization and relative deprivation,” Social Science and Medicine, vol. 48, no. 6, pp. 719–731, 1999.
[50]
R. Forrest and A. Kearns, “Social cohesion, social capital and the neighbourhood,” Urban Studies, vol. 38, no. 12, pp. 2125–2143, 2001.
[51]
R. Forrest and A. Kearns, Social Cohesion and Urban Inclusion for Disadvantaged Neighbourhoods. Foundations, Joseph Roundtree Foundation, York, UK, 1999.
[52]
R. B. Taylor, “Neighborhood responses to disorder and local attachments: the systemic model of attachment, social disorganization, and neighborhood use value,” Sociological Forum, vol. 11, no. 1, pp. 41–74, 1996.
[53]
Natural Resources Defense Council, “Protecting New Yorkers' health and the environment by regulating drilling in the Marcellus Shale,” 2011, http://www.nrdc.org/land/files/marcellus.pdf.
[54]
J. Burnett, “Health issues follow natural gas drilling in Texas,” 2011, http://www.npr.org/templates/story/story.php?storyId=120043996.