Background. Adolescent girls are less likely to meet physical activity recommendations than boys. This study examined the relative contribution of structured physical activity opportunities including physical education (PE) class and sports teams to overall activity levels for girls and boys. Methods. Data from 591 9th–12th grade students who completed the 2009 Philadelphia Youth Risk Behavior Survey were examined. Logistic regression was used to estimate the relationship between PE and sports teams and physical activity levels. Models were stratified by gender to estimate gender differences. Results. Girls were less likely to be active than boys: 27.9% of girls were sedentary as compared to 10.6% of boys. PE class was not related to activity levels among boys, while highly active girls were seven times more likely to participate in daily PE than were sedentary girls. Playing on one or more sports teams was associated with low-moderate and high activity in girls; among boys, sports team participation was only associated with high activity. Conclusions. The structured physical activity opportunities of PE and sports teams may contribute more to overall activity levels in girls than boys. A more rigorous assessment of this hypothesis is warranted to inform efforts to promote activity levels in girls. 1. Introduction Gender differences in physical activity levels among youth are well documented [1–5]. Less than half the proportion of girls as compared to boys achieve the recommended 60 minutes or more of activity per day in the previous week (11% versus 25%, resp.) [5]. The likelihood of developing chronic diseases such as obesity, type 2 diabetes, and high blood pressure significantly increased in sedentary as compared to active youth [6], and given the gender disparity in physical activity levels, this can translate to a relatively increased risk among girls. Given that sedentary behaviors among youth continue into adulthood [7, 8], these negative health effects have the potential to become life-long afflictions, particularly among women. Understanding the factors that contribute to this gender disparity in physical activity, particularly among youth, could inform programming efforts. Previous studies have examined the correlates and determinants of physical activity in adolescents [1, 9] and reported that, in addition to being male, other variables associated with increased levels of activity include being white, of younger age, having lower levels of depression, eating healthy foods, watching less television, and engaging in lower levels of tobacco and
References
[1]
K. Van Der Horst, M. J. C. A. Paw, J. W. R. Twisk, and W. Van Mechelen, “A brief review on correlates of physical activity and sedentariness in youth,” Medicine and Science in Sports and Exercise, vol. 39, no. 8, pp. 1241–1250, 2007.
[2]
S. C. Dumith, V. V. Ramires, M. A. Souza et al., “Overweight/obesity and physical fitness among children and adolescents,” Journal of Physical Activity & Health, vol. 7, no. 5, pp. 641–648, 2010.
[3]
P. J. Wenthe, K. F. Janz, and S. M. Levy, “Gender similarities and differences in factors associated with adolescent moderate-vigorous physical activity,” Pediatric Exercise Science, vol. 21, no. 3, pp. 291–304, 2009.
[4]
M. Frenn, S. Malin, A. M. Villarruel et al., “Determinants of physical activity and low-fat diet among low income African American and Hispanic middle school students,” Public Health Nursing, vol. 22, no. 2, pp. 89–97, 2005.
[5]
Centers for Disease Control and Prevention, “Surveillance summaries,” MMWR-Recommendations and Reports, vol. 59, 2010.
[6]
L. B. Andersen, S. A. Anderssen, S. Brage, U. Ekelund, and K. Froberg, “Physical activity and clustering of CVD risk factors—secondary publication,” Ugeskrift for Laeger, vol. 168, no. 47, pp. 4101–4103, 2006.
[7]
R. M. Malina and T. Bielicki, “Retrospective longitudinal growth study of boys and girls active in sport,” Acta Paediatrica, International Journal of Paediatrics, vol. 85, no. 5, pp. 570–576, 1996.
[8]
R. Telama, X. Yang, J. Viikari, I. V?lim?ki, O. Wanne, and O. Raitakari, “Physical activity from childhood to adulthood: a 21-year tracking study,” American Journal of Preventive Medicine, vol. 28, no. 3, pp. 267–273, 2005.
[9]
J. F. Sallis, J. J. Prochaska, and W. C. Taylor, “A review of correlates of physical activity of children and adolescents,” Medicine and Science in Sports and Exercise, vol. 32, no. 5, pp. 963–975, 2000.
[10]
S. G. Trost, R. Saunders, and D. S. Ward, “Determinants of physical activity in middle school children,” American Journal of Health Behavior, vol. 26, no. 2, pp. 95–102, 2002.
[11]
G. F. Dunton, M. Cousineau, and K. D. Reynolds, “The intersection of public policy and health behavior theory in the physical activity arena,” Journal of Physical Activity and Health, vol. 7, supplement 1, pp. S91–S98, 2010.
[12]
J. A. Serrano-Sanchez, S. M. Trujillo, A. L. Navarro, et al., “Associations between screen time and physical activity among Spanish adolescents,” PLoS ONE, vol. 6, no. 9, Article ID e24453, 2011.
[13]
E. E. Wickel and J. C. Eisenmann, “Maturity-related differences in physical activity among 13- to 14-year-old adolescents,” Pediatric Exercise Science, vol. 19, no. 4, pp. 384–392, 2007.
[14]
E. E. Wickel and J. C. Eisenmann, “Contribution of youth sport to total daily physical activity among 6- to 12-yr-old boys,” Medicine and Science in Sports and Exercise, vol. 39, no. 9, pp. 1493–1500, 2007.
[15]
J. Mota, P. Silva, M. P. Santos, J. C. Ribeiro, J. Oliveira, and J. A. Duarte, “Physical activity and school recess time: differences between the sexes and the relationship between children's playground physical activity and habitual physical activity,” Journal of Sports Sciences, vol. 23, no. 3, pp. 269–275, 2005.
[16]
L. Kann, N. D. Brener, and D. D. Allensworth, “Health education: results from the school health policies and programs study 2000,” Journal of School Health, vol. 71, no. 7, pp. 266–278, 2001.
[17]
Centers for Disease Control and Prevention, “Methodology of the youth risk behavior surveillance system,” MMWR-Recommendations and Reports, vol. 53, p. RR-12, 2004.
[18]
N. D. Brener, J. L. Collins, L. Kann, C. W. Warren, and B. I. Williams, “Reliability of the youth risk behavior survey questionnaire,” American Journal of Epidemiology, vol. 141, no. 6, pp. 575–580, 1995.
[19]
T. R. Simon, K. E. Powell, and A. C. Swann, “Involvement in physical activity and risk for nearly lethal suicide attempts,” American Journal of Preventive Medicine, vol. 27, no. 4, pp. 310–315, 2004.
[20]
L. A. Taliaferro, M. E. Eisenberg, K. E. Johnson, T. F. Nelson, and D. Neumark-Sztainer, “Sport participation during adolescence and suicide ideation and attempts,” International Journal of Adolescent Medicine and Health, vol. 23, no. 1, pp. 3–10, 2011.
[21]
D. Neumark-Sztainer, M. Story, P. J. Hannan, C. L. Perry, and L. M. Irving, “Weight-related concerns and behaviors among overweight and nonoverweight adolescents: implications for preventing weight-related disorders,” Archives of Pediatrics and Adolescent Medicine, vol. 156, no. 2, pp. 171–178, 2002.
[22]
Y. Wang, H. Liang, and X. Chen, “Measured body mass index, body weight perception, dissatisfaction and control practices in urban, low-income African American adolescents,” BMC Public Health, vol. 9, article 183, 2009.
[23]
G. F. Dunton, R. Lagloire, and T. Robertson, “Nutrition using the RE-AIM framework to evaluate the statewide dissemination of a school-based physical activity and nutrition curriculum: ‘Exercise your options’,” American Journal of Health Promotion, vol. 23, no. 4, pp. 229–232, 2009.
[24]
W. B. Strong, R. M. Malina, C. J. R. Blimkie et al., “Evidence based physical activity for school-age youth,” Journal of Pediatrics, vol. 146, no. 6, pp. 732–737, 2005.
[25]
D. K. Eaton, L. Kann, S. Kinchen et al., “Youth risk behavior surveillance—United States, 2007,” MMWR-Surveillance Summaries, vol. 57, no. 4, pp. 1–131, 2008.
[26]
S. J. Biddle, T. Gorely, N. Pearson, and F. C. Bull, “An assessment of self-reported physical activity instruments in young people for population surveillance: project ALPHA,” International Journal of Behavioral Nutrition and Physical Activity, vol. 8, article 1, 2011.
[27]
G. F. Dunton, A. A. Atienza, J. Tscherne, and D. Rodriguez, “Identifying combinations of risk and protective factors predicting physical activity change in high school students,” Pediatric Exercise Science, vol. 23, no. 1, pp. 106–121, 2011.
[28]
S. C. Dumith, M. R. Domingues, D. P. Gigante, P. C. Hallal, A. M. B. Menezes, and H. W. Kohl, “Prevalence and correlates of physical activity among adolescents from Southern Brazil,” Revista de Saude Publica, vol. 44, no. 3, pp. 457–467, 2010.
[29]
R. R. Pate, J. Stevens, L. S. Webber et al., “Age-related change in physical activity in adolescent girls,” Journal of Adolescent Health, vol. 44, no. 3, pp. 275–282, 2009.
[30]
C. Craggs, E. M. van Sluijs, K. Corder, J. R. Panter, A. P. Jones, and S. J. Griffin, “Do children's individual correlates of physical activity differ by home setting?” Health and Place, vol. 17, no. 5, pp. 1105–1112, 2011.
[31]
K. K. Davison and R. Jago, “Change in parent and peer support across ages 9 to 15 yr and adolescent girls' physical activity,” Medicine and Science in Sports and Exercise, vol. 41, no. 9, pp. 1816–1825, 2009.
[32]
T. L. McKenzie, E. J. Stone, H. A. Feldman et al., “Effects of the CATCH physical education intervention: teacher type and lesson location,” American Journal of Preventive Medicine, vol. 21, no. 2, pp. 101–109, 2001.
[33]
D. P. Coe, J. M. Pivarnik, C. J. Womack, M. J. Reeves, and R. M. Malina, “Effect of physical education and activity levels on academic achievement in children,” Medicine and Science in Sports and Exercise, vol. 38, no. 8, pp. 1515–1519, 2006.
[34]
P. Mulhall, J. Reis, and S. Begum, “Early adolescent participation in physical activity: correlates with individual and family characteristics,” Journal of Physical Activity and Health, vol. 8, no. 2, pp. 244–252, 2011.