Objective. To test whether the serum retinol level in mothers supplemented with 400,000?IU of vitamin A is higher than in those supplemented with 200,000?IU and to estimate duration of the protective effect of vitamin A supplementation in the serum retinol level. Methods. Double-blind, randomised controlled trial performed in two hospitals in the state of Pernambuco in northeast Brazil. Three hundred twelve mothers were recruited immediately postpartum. All women received a capsule containing 200,000?IU of vitamin A, and 10 days after delivery, they were randomly assigned to one of two treatment groups. One group received a second capsule containing vitamin A and the other group received a placebo. Each group was invited back after 2, 4, and 6 months for serum retinol analyses. Results. No difference was found between the two groups in serum maternal retinol concentration at 2 months (2.13 versus 2.03?μmol/L), 4 months (2.20 versus 2.24?μmol/L) or 6 months (2.29 versus 2.31?μmol/L). Because there was no further effect and because this population has a level of vitamin A deficiency considered mild, our results do not support a proposal to increase the dosing schedule for vitamin A in postpartum women as recommended by the IVACG. 1. Introduction Estimates show that each year approximately 20 million pregnant women living in areas at risk for vitamin A deficiency (VAD) have low concentrations of retinol (<0.70?μmol/L) in blood. In the Americas and Brazil VAD prevalence estimates are around 8% and 5%, respectively [1]. The Brazilian Northeast is one of the poorest regions of the country with a 46% Human Poverty Index. A study in a big city of the Northeast region observed a 25% prevalence of inadequate serum retinol concentration among breastfeeding women [2]. The World Health Organisation (WHO) recommends mass supplementation with a megadose of vitamin A in the immediate postpartum period in countries where VAD is endemic [3]. Several randomised controlled clinical trials have shown that vitamin A supplementation in areas at risk for VAD can significantly reduce child mortality [4–6]. However, there is still no consensus on whether the vitamin A supplementation during pregnancy produces the same benefits in reducing maternal morbidity and mortality [7]. Although a strategy for supplementation during the immediate postpartum period has been implemented in several countries (including Brazil), there are still doubts regarding the most effective regimen. Investigations have warned that a dose of 200,000, IU seems to be insufficient to correct subclinical
References
[1]
K. J. West, “Extent of vitamin A deficiency among preschool children and women of reproductive age,” Journal of Nutrition, vol. 32, pp. 2857S–2866S, 2002.
[2]
R. E. Lopes, K. S. Ramos, C. C. Bressani, K. Arruda, and A. I. Souza, “Prevalência de anemia e hipovitaminose A em puérperas do Centro de Aten??o à Mulher do Instituto Materno Infantil Prof. Fernando Figueira, IMIP: um estudo piloto,” Revista Brasileira De Sau'De Materno Infantil, vol. 6, supplement 1, pp. S63–S68, 2006.
[3]
World Health Organization, Safe Vitamin A Dosage during Pregnancy and Lactation. Recommendations and Report of a Consultation, WHO/ NUT, Geneva, Switzerland, 1998.
[4]
G. H. Beaton, R. Martorell, K. A. L'Abbe, et al., Effectiveness of Vitamin A Supplementation in the Control of Young Child Morbidity and Mortality in Developing Countries. Final Report To CIDA, University of Toronto, Toronto, Canada, 1993.
[5]
W. W. Fawzi, T. C. Chalmers, M. G. Herrera, and F. Mosteller, “Vitamin A supplementation and child mortality: a meta-analysis,” Journal of the American Medical Association, vol. 269, no. 7, pp. 898–903, 1993.
[6]
P. P. Glasziou and D. E. M. Mackerras, “Vitamin A supplementation in infectious diseases: a meta-analysis,” British Medical Journal, vol. 306, no. 6874, pp. 366–370, 1993.
[7]
N. van den Broek, R. Kulier, A. M. Gülmezoglu, and J. Villar, “Suplementación con vitamina A durante el embarazo (Revisión Cochrane traducida),” Cochrane Plus. In presshttp://www.update-software.com.
[8]
A. L. Rice, R. J. Stoltzfus, A. De Francisco, J. Chakraborty, C. L. Kjolhede, and M. A. Wahed, “Maternal vitamin A or β-carotene supplementation in lactating Bangladeshi women benefits mothers and infants but does not prevent subclinical deficiency,” Journal of Nutrition, vol. 129, no. 2, pp. 356–365, 1999.
[9]
A. Sommer and F. R. Davidson, “Assessment and control of vitamin A deficiency: the annecy accords,” Journal of Nutrition, vol. 132, no. 9, pp. 2845S–2850S, 2002.
[10]
D. A. Ross, “Recommendations for vitamin A supplementation,” Journal of Nutrition, vol. 131, pp. 2902S–2906S, 2002.
[11]
L. C. Malaba, P. J. Iliff, K. J. Nathoo et al., “Effect of postpartum maternal or neonatal vitamin A supplementation on infant mortality among infants born to HIV-negative mothers in Zimbabwe,” American Journal of Clinical Nutrition, vol. 81, no. 2, pp. 454–460, 2005.
[12]
S. K. Tchum, S. A. Tanumihardjo, S. Newton et al., “Evaluation of vitamin A supplementation regimens in Ghanaian postpartum mothers with the use of the modified-relative-dose-response test,” American Journal of Clinical Nutrition, vol. 84, no. 6, pp. 1344–1349, 2006.
[13]
M. K. Darboe, D. I. Thurnham, G. Morgan et al., “Effectiveness of an early supplementation scheme of high-dose vitamin A versus standard WHO protocol in Gambian mothers and infants: a randomised controlled trial,” The Lancet, vol. 369, no. 9579, pp. 2088–2096, 2007.
[14]
R. A. Ayah, D. L. Mwaniki, P. Magnussen et al., “The effects of maternal and infant vitamin A supplementation on vitamin A status: a randomised trial in Kenya,” British Journal of Nutrition, vol. 98, no. 2, pp. 422–430, 2007.
[15]
B. Kirkwood and J. Sterne, Essential Medical Statistics, Blackwell Science, Oxford, UK, 2nd edition, 2003.
[16]
H. Flores, M. N. A. Azevedo, F. A. C. S. Campos et al., “Serum vitamin A distribution curve for children aged 2–6 y known to have adequate vitamin A status: a reference population,” American Journal of Clinical Nutrition, vol. 54, no. 4, pp. 707–711, 1991.
[17]
H. C. Furr, A. J. Clifford, and A. D. Jones, “Analysis of apocarotenoids and retinoids by capillary gas chromatography-mass spectrometry,” Methods in Enzymology, vol. 213, pp. 281–290, 1992.
[18]
E. Accioly and S. Souza-Queiróz, “Deficiencia de vitamina A en embarazadas asistidas en una maternidad pública en Rio de Janeiro, Brasil,” Rev Chilena Nutrición, vol. 27, pp. 352–357, 2001.
[19]
E. Casanueva, R. Valdés-Ramos, F. Pfeffer, A. Ricalde-Moreno, E. García-Villegas, and C. Meza, “Serum retinol in urban Mexican women during the perinatal period,” Salud Publica de Mexico, vol. 41, supplement 4, pp. 317–321, 1999.
[20]
A. Rice, “Postpartum vitamin A supplementation: evaluating the evidence for action,” A2Z Project Technical Brief, 2007, http://www.a2zproject.org/.
[21]
P. H. Rondó, B. S. Villar, and A. M. Tomkins, “Vitamin A status of pregnant women assessed by a biochemical indicator and a simplified food frequency questionnaire,” Archivos Latinoamericanos de Nutricion, vol. 49, no. 4, pp. 322–325, 1999.
[22]
R. J. Stoltzfus, M. Hakimi, K. W. Miller et al., “High dose vitamin A supplementation of breast-feeding Indonesian mothers: effects on the vitamin A status of mother and infant,” Journal of Nutrition, vol. 123, supplement 4, pp. 666–675, 1993.
[23]
World Health Organization, Iron Deficiency Anaemia: Assessment, Prevention, and Control: a Guide for Programme Managers, World Health Organization, Geneva, Switzerland, 2001.
[24]
Z. J. Salas, F. Faz-Cepeda, and L. N. B. Casta?ón, “Consumo de folatos de mujeres en edad fértil de Apocada, N.L. México,” Revista Salud Publica y Nutrición, vol. 4, no. 4, 2003.
[25]
U.S. Department of Agriculture, Agricultural Research Service, “USDA Nutrient Data Laboratory,” 2001, Composition of Foods Raw, Processed, Prepared. Nutrient Database for Standard Reference, Release 14.
[26]
Institute of Medicine. National, Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline, National Academy Press, Washington, DC, USA, 2002.
[27]
Organización Mundial de la Salud, Indicadores Para Evaluar Las Prácticas De Alimentación Del Lactante Y Del Ni?o Peque?o: Conclusiones De La Reunión De Consenso Llevada a cabo Del 6 Al 8 De Noviembre De 2007, OMS, Washington, DC, USA, 2009.
[28]
S. A. Tanumihardjo, “Assessing vitamin A status: past, present and future,” Journal of Nutrition, vol. 134, no. 1, pp. 290S–293S, 2004.
[29]
S. K. Roy, A. Islam, A. Molla, S. M. Akramuzzaman, F. Jahan, and G. Fuchs, “Impact of a single megadose of vitamin A at delivery on breastmilk of mothers and morbidity of their infants,” European Journal of Clinical Nutrition, vol. 51, no. 5, pp. 302–307, 1997.
[30]
L. H. Allen and M. Haskell, “Estimating the potential for vitamin A toxicity in women and young children,” Journal of Nutrition, vol. 132, no. 9, pp. 2907S–2919S, 2002.