全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Acute, Repeated Exposure to Mobile Phone Noise and Audiometric Status of Young Adult Users in a University Community

DOI: 10.5402/2012/241967

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Exposure to noise from mobile devices is suspected to affect hearing. Data are limited, particularly in less developed countries. We assessed noise levels from mobile phones and user audiometric status at University of Ibadan, Nigeria, in an initial cross-sectional study. Methods. Fifty-eight staff and 45 young adult students owning mobile phones were selected. A pretested questionnaire assessed demographics, phone attributes, and predominant ear used for making and receiving calls. Noise was measured in A-weighted decibels. Pure tone audiometry was conducted at varying frequencies. Statistics computed included Chi-square and t-tests. Results. Certain phone brands used by students were commonly reported. More utilized right ears to make or receive calls. Mean reported mobile phone use duration by students was years, lower than among staff, years ( ). There were differences in use of head phones (22.2%, 12.1%) and speakers (51.1%, 15.5%) by students and staff, respectively ( ). Mean measured noise levels of phones when ringing, per user settings, were high ?dBA (students) and ?dBA (staff). Audiometry suggested 22.2% students and 28.0% staff had some evidence of hearing impairment. Conclusions. Mobile phones noise levels were high, but exposures though frequent were of short duration. Larger, longitudinal studies are needed on phone use and hearing impairment. 1. Introduction In general, less developed countries are establishing mobile (cellular) phone technology in preference to the traditional, and relatively more expensive, fixed line systems. Therefore, if there are any adverse health risks—potential biological effects—due to acute, repeated (or chronic) personal exposure to radiofrequency radiation from the use of mobile phones, then it will be a global concern; small impacts could have important public health consequences. This may be particularly true among younger adults using mobile phones for calls, music, e-mail, and so forth. According to WHO [1] and Nelson et al. [2], global prevalence of disabling hearing loss in adults was 16%, which may vary from 7% to 21% in various subregions of the world, and was attributable mainly due to occupational noise. However, with approximately four billion users of mobile phones worldwide [3], and with a significant proportion incorporating media playing capability and speakers, mobile phones are among the most popular portable media players (PMP) on the market and present an emerging health concern in both occupational and nonoccupational settings. Ear pieces, as mobile phone accessories, and most

References

[1]  World Health Organization (WHO), “Grades of hearing impairment,” http://www.who.int/pbd/deafness/hearing_impairment_grades/en/index.html, 2008.
[2]  D. I. Nelson, R. Y. Nelson, M. Concha-Barrientos, and M. Fingerhut, “The global burden of occupational noise-induced hearing loss,” American Journal of Industrial Medicine, vol. 48, no. 6, pp. 446–458, 2005.
[3]  WHO, “Electromagnetic fields and public health: mobile phones,” World Health Organization Factsheet 193, World Health Organization, Geneva, Switzerland, 2010, http://www.who.int/mediacentre/factsheets/fs193/en/print.html.
[4]  B. J. Fligor and L. C. Cox, “Output levels of commercially available portable compact disc players and the potential risk to hearing,” Ear and Hearing, vol. 25, no. 6, pp. 513–527, 2004.
[5]  Scientific Committee on Emerging and Newly Identified Health Risk (SCENIHR), “Potential health risks from exposure to noise from personal music players and mobile phones including a music playing function,” SCENIHR, http://ec.europa.eu/health/ph_risk/risk_en.htm, 2008.
[6]  A. E. Katz, H. L. Gerstman, R. G. Sanderson, and R. Buchanan, “Stereo earphones and hearing loss,” New England Journal of Medicine, vol. 307, no. 23, pp. 1460–1461, 1982.
[7]  C. G. Rice, M. Breslin, and R. G. Roper, “Sound levels from personal cassette players,” British Journal of Audiology, vol. 21, no. 4, pp. 273–278, 1987.
[8]  T. W. Wong, C. A. Van Hasselt, L. S. Tang, and P. C. Yiu, “The use of personal cassette players among youths and its effects on hearing,” Public Health, vol. 104, no. 5, pp. 327–330, 1990.
[9]  H. Ising, J. Hanel, M. Pilgramm, W. Babisch, and A. Lindthammer, “Risk of hearing loss caused by listening to music via headphones,” HNO, vol. 42, no. 12, pp. 764–768, 1994.
[10]  P. A. Smith, A. Davis, M. Ferguson, and M. E. Lutman, “The prevalence and type of social noise exposure in young adults in England,” Noise Health, vol. 2, no. 6, pp. 41–56, 2000.
[11]  P. J. Catalano and S. M. Levin, “Noise-induced hearing loss and portable radios with headphones,” International Journal of Pediatric Otorhinolaryngology, vol. 9, no. 1, pp. 59–67, 1985.
[12]  W. Williams, “Noise exposure levels from personal stereo use,” International Journal of Audiology, vol. 44, no. 4, pp. 231–236, 2005.
[13]  M. Shayani-Nasab, S. A. Safavi Naiianni, M. R. Fathol Alolomi, and A. Makaremi, “Effects of mobile telephones on hearing,” Acta Medica Iranica, vol. 44, no. 1, pp. 46–48, 2006.
[14]  B. Welleschik, “The effect of the noise level on the occupational hearing loss. Observations carried out in 25,544 industrial workers,” Laryngologie Rhinologie Otologie, vol. 58, no. 11, pp. 832–841, 1979.
[15]  ISO 1999:1990 Acoustics, Determination of Occupational Noise Exposure and Estimation of Noise Induced Hearing Impairment, International Committee for Standardization, Geneva, Switzerland, 1990.
[16]  European Union, “Directive 2003/10/EC of European Parliament and of the Council of 6 February 2003 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (noise). 17th individual Directive within meaning of Article 16(1) of Directive 89/391/EEC),” Official Journal of the European Communities. No L42/38, 2003.
[17]  G. Berg, J. Schüz, F. Samkange-Zeeb, and M. Blettner, “Assessment of radiofrequency exposure from cellular telephone daily use in an epidemiological study: German Validation study of the international case-control study of cancers of the brain—INTERPHONE-study,” Journal of Exposure Analysis and Environmental Epidemiology, vol. 15, no. 3, pp. 217–224, 2005.
[18]  A. J. Swerdlow, M. Feychting, A. C. Green, L. Kheifets, and D. A. Savitz, “International commission for non-ionizing radiation protection standing committee on epidemiology. Mobile phones, Brain tumors, and the interphone study: where are we now?” Environ Health Perspect, vol. 119, no. 12, pp. 1534–1538, 2011.
[19]  I. Inyang, G. Benke, R. Mckenzie, and M. Abramson, “Comparison of measuring instruments for radiofrequency radiation from mobile telephones in epidemiological studies: implications for exposure assessment,” Journal of Exposure Science and Environmental Epidemiology, vol. 18, no. 2, pp. 134–141, 2008.
[20]  M. A. Kelsh, M. Shum, A. R. Sheppard et al., “Measured radiofrequency exposure during various mobile-phone use scenarios,” Journal of Exposure Science and Environmental Epidemiology, vol. 21, no. 4, pp. 343–354, 2011.
[21]  L. Hillert, A. Ahlbom, D. Neasham et al., “Call-related factors influencing output power from mobile phones,” Journal of Exposure Science and Environmental Epidemiology, vol. 16, no. 6, pp. 507–514, 2006.
[22]  M. Vrijheid, B. K. Armstrong, D. Bédard et al., “Recall bias in the assessment of exposure to mobile phones,” Journal of Exposure Science and Environmental Epidemiology, vol. 19, no. 4, pp. 369–381, 2009.
[23]  U.S. Government Accountability Office, Telecommunications: Exposure and Testing Requirements for Mobile Phones Should be Reassessed, http://www.gao.gov/assets/600/592902.pdf, 2012.
[24]  M. R. Usikalu and M. L. Akinyemi, “Monitoring of radiofrequency radiation from selected mobile phones,” Journal of Applied Sciences Research, vol. 3, no. 12, pp. 1701–1704, 2007.
[25]  E. A. Masterson, S. Tak, C. L. Themann et al., “Prevalence of hearing loss in the United States by industry,” American Journal of Industrial Medicine. In press.
[26]  P. Velayutham, J. W. Tan, R. Raman, G. Gopala-Krishnan, K. H. Ng, and S. Singh, “Investigation of high frequency hearing loss among mobile phone users,” in Proceedings of the International EMF Conference, Kuala Lumpur, Malaysia, 2007.
[27]  N. S. Seixas, R. Neitzel, B. Stover et al., “10-Year prospective study on noise exposure and hearing damage among construction workers,” Occupational and Environmental Medicine, vol. 69, pp. 643–650, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133